Chapter 1: Polynomial approximation examples MPRO - Complexity: approximation algorithms

Dimitri Watel (dimitri.watel@ensiie.fr)

2023

The Steiner tree problem

Inputs

- An undirected graph G = (V, E)
- weights $\omega : E \to \mathbb{R}^+$;
- A subset $X \subset V$ of terminals

Output

A tree T included in G and covering X at minimum cost: $\min \bigcup_{e \in T} \omega(e)$.

Some ideas

Let
$$k = |X|$$
 and $n = |V|$

- What do we search if k = 2?
- What do we search if k = n?

A 2-approximation algorithm

Algorithm of Choukkmane (1978) et de Kou $\it et al.$ (1981), PLesnìk (1981) and Iwainsky $\it et al.$ (1986)

- For every x, x', compute the shortest path p(x, x') from x to x' of weight d(x, x')
- Build the complete graph H = (X, E') weighted with d.
- Compute a minimum spanning tree T_H of H.
- Compute $T = \bigcup_{(x,x') \in T_H} p(x,x')$.
- Simplify T (remove the cycles, the non terminal leaves, ...).
- Return T.

Approximation ratio: $2 \cdot (1 - \frac{1}{k})$

The traveling salesman problem

Inputs

- A complete undirected graph G = (V, E)
- weights $\omega : E \to \mathbb{R}^+$.

Output

A hamiltonian cycle C of G at minimum cost: $\min \bigcup_{e \in C} \omega(e)$.

Some ideas

Let
$$k = |X|$$
 and $n = |V|$

 What do we search if we remove an edge from an optimal solution?

A 2-approximation algorithm

(Simplified) algorithm of Christofides

- Compute a minimum spanning tree T of G.
- Return the cycle that visits the nodes of G in the same order than a depth first search of T.

Approximation ratio: ∞

Approximation ratio: 2 si inégalité triangulaire.

A $\frac{3}{2}$ -approximation algorithm

Algorithm of Christofides

- Compute a minimum spanning tree T of G.
- Let V' be the odd degree nodes of T, compute (in G) a minimum cost perfect matching M of V'.
- Compute an eulerian cycle C' of $T \cup M$ and return the cycle that visits the nodes of G in the same order than C'.

Approximation ratio: ∞

Approximation ratio: $\frac{3}{2}$ si inégalité triangulaire.

The set covering problem

Inputs

- A set *X*;
- a set of parts of $X: S \subset 2^X$;
- weights $\omega: S \to \mathbb{R}^+$;

Output

A subset $C \subset S$ covering X (i.e. $X \subset \bigcup_{s \in C} s$) at minimum cost:

$$\min \sum_{s \in C} \omega(s).$$

Version non pondérée

Inputs

- A set X;
- a set of parts of $X: S \in 2^X$;

Output

A subset $C \subset S$ covering X with minimum size: min |C|.

Which sets would you intuitively choose?

A ln(k)-approximation algorithm (unweighted version)

Algorithm of Johnson (1974), Lovàsz (1975) and Chvàtal (1979)

• While some elements of *X* are uncovered, select the set containing the maximum number of uncovered elements.

Approximation ratio: ln(k/OPT) + 1

A ln(k)-approximation algorithm (weighted version)

Algorithm of Johnson (1974), Lovàsz (1975) and Chvàtal (1979)

• While some elements X' of X are uncovered, select the set s minimizing $\omega(s)/|X'\cap s|$.

Approximation ratio:
$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} \sim \ln(k)$$

The knapsack problem

Inputs

- An integer V (the volume of the bag);
- entiers u_1, u_2, \ldots, u_n (the utilities of the objects);
- entiers v_1, v_2, \ldots, v_n (the volumes of the objects).

Output

Objects that can be put in the bag and maximizing the value: A subset $I \subset [1; n]$ such that $\sum_{i \in I} v_i \leq V$ and maximizing $\sum_{i \in I} u_i$.

Some ideas

The knapsack problem is pseudo-polynomial.

- if the volume of the bag is polynomial, the problem is polynomial
- if the volume of the objects are polynomial, the problem is polynomial
- if the profits of the objects are polynomial, the problem is polynomial

An FPTAS

Algorithm of Ibarra and Kim (1975)

- Let $\varepsilon > 0$ and $K = \frac{\varepsilon \max(u_i)}{n}$
- Let $u_i' = \lfloor \frac{u_i}{K} \rfloor$
- Solve the instance where each utility u_i is replaced by u'_i and return the solution found.

Approximation ratio:
$$1 - \varepsilon$$

Time complexity: $O(n^2 | \frac{n}{\varepsilon} |)$

The bin packing problem

Inputs

- An integer V (the volume of a bin);
- entiers v_1, v_2, \ldots, v_n (the volumes of the objects).

Output

The minimum number of bins that are needed to store every object : n integers a_1, a_2, \ldots, a_n such that $\forall i, \sum_{j:a_j=i} v_j \leq V$ minimizing $\max(a_i)$.

Remarque : on peut supposer V=1

Some ideas

• What if I receive the objects in an arbitrary order and if I have to immediately decide where to put it?

A 2-approximation

Algorithme First fit

For every $i \in [1; n]$, put i in the first valid bin.

Approximation ratio: 2

Some other ideas

• If there exists two constants ε and K such that every object has size at least ε and if the number of distinct objects is K, the problem is polynomial.

Lemme

If every object has size at least ε , there exists an $(1+\varepsilon)$ approximation algorithm:

- Sort every objects
- Group them, in that order, in $\lceil \frac{1}{\varepsilon^2} \rceil$ groups of size at most $|n\varepsilon^2|$.
- Replace every object x by x', the largest item in its group.
- Find an optimal solution S of that new instance.
- Return the same solution in the first instance (after replacing

An asymptotic PTAS

Vega and Lueker algorithm

- Let $\varepsilon > 0$
- Let A be all the objects of size lower than ε . Remove A.
- Find a $1+\varepsilon$ approximated solution with the algorithm of the previous lemma.
- Add every object of A with the First Fit algorithm.

Approximation ratio:
$$(1 + 2\varepsilon + \frac{1}{OPT})$$

Complexity: $O(n^{\binom{M+K}{M}})$, $M = \lfloor \frac{1}{\varepsilon} \rfloor$, $K = \lceil \frac{1}{\varepsilon^2} \rceil$

Minimum Planar Coloring problem

Inputs

• A graph G = (V, E) planaire;

Output

The minimum number of colors needed to color G

Quelques idées

- A graph can be colored with 1 color if and only if it is disconnected
- A graph can be colored with 1 color if and only if it is bipartite
- A planar graph can be colored with 4 colors [Appel, Haken (1976)]

Une approximation de rapport absolu 1

Algorithme de coloration de graphe

- Si le graphe est déconnecté, renvoyer 1
- Si le graphe est biparti, renvoyer 2
- Sinon renvoyer 4

Rapport d'approximation (absolu) : 1