Chapter 2: Optimization problems and approximation algorithms MPRO - Complexity: approximation algorithms

To completely approximation algorithms

Dimitri Watel (dimitri.watel@ensiie.fr)

2024

Decision problem

(Informal) definition

A decision problem is a problem describing inputs (the instances) and a question about the input for which the answer is **Yes** or **No** and depends on the input.

The complexity class P

Definition of the class P

A decision problem Π is polynomial, or belongs to P, if its complexity is polynomial. In other words, there is a constant c such that its complexity is $O(n^c)$.

The complexity class EXPTIME

Definition of the class EXPTIME

A decision problem Π is exponential, or belongs to EXPTIME, if its complexity is exponential. In other words, there is a constant c such that its complexity is $O(2^{(n^c)})$.

$$P \subseteq EXPTIME$$

The complexity class NP

Definition of the class NP

A decision problem Π is belongs to NP if there exists a constant c and a verifier \mathcal{V} for the answers **YES** with complexity $O(n^c)$ and $O(n^c)$.

III

 $\mathsf{P}\subset\mathsf{NP}\subsetneq\mathsf{EXPTIME}$

The complexity class P

Definition of the class P

A decision problem Π is polynomial, or belongs to P, if its complexity is polynomial. In other words, there is a **deterministic** Turing machine that solves Π in polynomial time.

$$\mathsf{P} = \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(n^c)$$

The complexity class EXPTIME

Definition of the class EXPTIME

A decision problem Π is exponential, or belongs to EXPTIME, if its complexity is exponential. In other words, there is a **deterministic** Turing machine that solves Π in exponential time:

$$\mathsf{EXPTIME} = \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(2^{n^c})$$

$$P \subseteq EXPTIME$$

The complexity class NP

Definition of the class NP (non-deterministic Polynomial)

A decision problem Π belongs to NP, if there is a **non-deterministic** Turing machine that solves Π in polynomial time.

$$\mathsf{NP} = \bigcup_{c \in \mathbb{N}} \mathsf{NTIME}(n^c)$$

$$P \subset NP \subset PSPACE$$

Karp polynomial reduction

(Informal) definition

Let Π_1 and Π_2 , a polynomial reduction from Π_1 to Π_2 transforms every positive (resp. negative) instance of Π_1 into a positive (resp. negative) instance of Π_2 in polynomial time.

If Π_1 reduces to Π_2 , then we say that Π_2 is *harder* than Π_1 and we write:

$$\Pi_1 \preccurlyeq \Pi_2$$

Hardness

NP-Hard problem

Let Π_1 be a decision problem. Π_1 is NP-Hard if, for every problem Π_2 of \mathcal{C} , $\Pi_2 \preccurlyeq \Pi_1$.

Completeness

NP-complete problem

Let Π be a decision problem. Π is NP-Complete if $\Pi \in \mathsf{NP}$ and if it is NP-Hard.

Turing polynomial reduction

Definition: Turing polynomial reduction

Let Π_1 and Π_2 bet two problems, a Turing polynomial reduction from Π_1 to Π_2 is an algorithme \mathcal{R} such that

- \mathcal{R} may call an (imaginary) algorithm \mathcal{R}' called *oracle* that solves Π_2 in constant time;
- \mathcal{R} solves Π_1 in polynomial time.

We write $\Pi_1 \preccurlyeq_{\mathcal{T}} \Pi_2$.

 Π_1 and Π_2 are not necessarily decision problems.

Optimization problem

(Informal) definition

An optimization problem is a problem containing inputs (the *instances*), solutions (the *feasible solutions*), a *measure* or *weight* associating to each solution an integer. The objective is to find a solution maximizing or minimizing the measure.

Problems associated with an optimization problem

(Informal) definition

An optimization problem Π is associated with 3 problems:

- a decision problem Π_D : does there exist a feasible solution with weight
 - lower than K?, if the objective is to minimize the measure,
 - greater than K?, if the objective is to maximize the measure ;
- an evaluation problem Pi_E: find the weight of an optimal solution;
- a construction problem Π_C : find an optimal solution and its weight.

PO and NPO

Definition

PO and NPO are the equivalent classes of P and NP for the optimization problems: the optimization problems that can be solved in deterministic or non deterministic polynomial time.

Particularly,

- $\Pi \in PO \Rightarrow \Pi_D \in P$
- $\Pi \in NPO \Rightarrow \Pi_D \in NP$

Optimization problem

Definition: optimization problem

An optimization problem Π is a quadruplet $(\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ such that:

- \mathcal{I} is the set of d'instances of Π ;
- S is a function associating to $x \in \mathcal{I}$ a set of feasible solutions of x;
- \mathcal{M} is a *measure* function associating to $x \in \mathcal{I}$ and $y \in \mathcal{S}(x)$ an integer;
- O is the *objectif* with value min or max that specify whether we want to find a solution with minimum of maximum measure.

 \mathcal{I} and $\mathcal{S}(x)$ may contain any mathematical objects.

Optimal solution

Definition

Let $\Pi = (\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ be an optimization problem and $x \in \mathcal{I}$. We call *optimal solution* a solution $y^* \in \mathcal{S}(x)$ such that:

$$\mathcal{M}(x, y^*) = \min_{y \in \mathcal{S}(x)} \mathcal{M}(x, y) \text{ si } \mathcal{O} = \min$$

$$\mathcal{M}(x, y^*) = \max_{y \in \mathcal{S}(x)} \mathcal{M}(x, y)$$
 si $\mathcal{O} = \max$

We denote the set of optimal solutions of x by $\mathcal{S}^*(x)$ and the value $\mathcal{M}(x, y^*)$ of the optimal solutions by $\mathcal{M}^*(x)$.

Size of an instance or of a solution

Definition

The size of an instance or of a feasible solution is the number of bits used to encode it.

We usually denote the size of the input x by |x| or n and the size of a feasible solution y by |y|.

Problems associated with an optimization problem

Definition

An optimization problem $\Pi = (\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ is associated with 3 problems:

- a decision problem Π_D : let $x \in \mathcal{I}$ and an integer K, determine if $\mathcal{M}^*(x) \leq K$ if $\mathcal{O} = \min$, or if $\mathcal{M}^*(x) \geq K$ if $\mathcal{O} = \max$.
- an evaluation problem Pi_E : let $x \in \mathcal{I}$, compute $\mathcal{M}^*(x)$;
- a construction problem Π_C : let $x \in \mathcal{I}$, compute an optimal solution $y \in \mathcal{S}^*(x)$ and $\mathcal{M}^*(x)$.

Some results

Theorem (

Let Π be an optimization problem:

$$\Pi_D \preccurlyeq_T \Pi_E \preccurlyeq_T \Pi_C$$

$$\Pi_E \preccurlyeq_{\mathcal{T}} \Pi_D \text{ si } \mathcal{M}^*(x) = O(2^{|x|^c})$$

NPO

Definition

Let $\Pi = (\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ be an optimization problem, Π belong to the NPO class if

- let x be a binary number, we can check in polynomial time if x encodes an instance of I;
- there exists a polynom q such that for every $x \in \mathcal{I}$
 - for every $y \in \mathcal{S}(x)$, $|y| \leq q(|x|)$,
 - for every binary number y such that $|y| \le q(|x|)$, we can check in polynomial time if y encodes a feasible solution of x;
- for every $x \in \mathcal{I}$ and every $y \in \mathcal{S}(x)$, we can compute $\mathcal{M}(x,y)$ in polynomial time.

PO

Definition

A problem $\Pi \in \mathsf{NPO}$ belongs to the class PO if we can solve $\Pi_{\mathcal{C}}$ in polynomial time.

By definition $PO \subseteq NPO$.

PO, NPO, P and NP

Theorem

$$\Pi \in PO \Rightarrow \Pi_D \in P$$

$$\Pi \in \mathit{NPO} \Rightarrow \Pi_D \in \mathit{NP}$$

NP-Hard optimization problem

Definition

Let Π_1 be an optimization problem, Π_1 is NP-Hard, for every decision problem $\Pi_2 \in \text{NP}$, $\Pi_2 \preccurlyeq_{\mathcal{T}} \Pi_1$.

Theorem

Let $\Pi \in NPO$, if Π_D is NP-Hard, then Π is NP-Hard.

Theorem

$$PO = NPO \Rightarrow P = NP$$

Polynomial approximation

Do we have to return an optimal solution?

Polynomial approximation

Definition

A polynomial approximation algorithm for a problem Π is a polynomial algorithm that returns a feasible solution of Π that is "close" to an optimal solution.

Polynomial approximation of a minimization problem

Definition

A polynomial approximation algorithm for a minimization problem Π with ratio r or r polynomial approximation algorithm is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \leq r(x) \cdot M^*(x)$.

r est une fonction de \mathcal{I} dans \mathbb{R} .

Polynomial approximation of a maximization problem

Definition

A polynomial approximation algorithm for a maximization problem Π with ratio r or r polynomial approximation algorithm is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \geq r(x) \cdot M^*(x)$.

r est une fonction de \mathcal{I} dans \mathbb{R} .

Approximability classes: APX

Definition

A problem $\Pi \in \text{NPO}$ belongs to the class APX if there exists a constant c and a c-polynomial approximation for Π .

$$APX \subset NPO$$
 (Si $P \neq NP$, $APX \subseteq NPO$.)

Approximability classes: r-APX

Soit r une fonction $(r : \mathbb{N} \to \mathbb{R}^+)$

Definition

A problem $\Pi \in \mathsf{NPO}$ belongs to the class $r\text{-}\mathsf{APX}$ if there exists a $r(|\mathcal{I}|)$ -polynomial approximation for Π .

De maninère similaire, on définit la classe
$$O(r)$$
-APX. r -APX \subset NPO (Si P \neq NP, r -APX \subsetneq NPO.)

Approximability classes: PTAS

Definition: PTAS

A problem $\Pi \in \text{NPO}$ belongs to the class FPTAAS if there exists an approximation scheme for Π : for every $\varepsilon > 0$, there exists a $(1+\varepsilon)$ -polynomial approximation for Π .

$$\mathsf{PTAS} \subset \mathsf{APX} \; (\mathsf{Si} \; \mathsf{P} \neq \mathsf{NP}, \, \mathsf{PTAS} \subsetneq \mathsf{APX}.)$$

Approximability classes: FPTAS

Definition: FPTAS

A problem $\Pi \in \mathsf{NPO}$ belongs to the class FPTAS if there exists a fully polynomial time approximation scheme for Π : for every $\varepsilon > 0$, there exists a $(1+\varepsilon)$ -polynomial approximation for Π with a complexity polynomial in the size of the input and in $\frac{1}{\varepsilon}$.

$$\mathsf{FPTAS} \subset \mathsf{PTAS}$$
 (Si $\mathsf{P} \neq \mathsf{NP}$, $\mathsf{FPTAS} \subsetneq \mathsf{PTAS}$.)

Approximability classes: EPTAS

Definition: EPTAS

A problem $\Pi \in \text{NPO}$ belongs to the class EPTAS if there exists an efficient approximation scheme for Π : for every $\varepsilon > 0$, there exists a $(1+\varepsilon)$ -polynomial approximation for Π with a complexity $O(f(\frac{1}{\varepsilon}) \cdot n^c)$.

FPTAS \subset EPTAS \subset PTAS (Si P \neq NP, FPTAS \subsetneq EPTAS, et si ???? \neq ??? (cf cours de complexité paramétrée), EPTAS \subsetneq PTAS.)

Peut-on caractériser les problèmes qui ont ou n'ont pas de PTAS/FPTAS?

Binary encoding VS Unary encoding

Binary encoding

Encode an integer k with binary encoding on a Turing machine consists in writing using the base-2 system with $\log_2(k)$ bits surrounded by two white symbols. The memory space used by k is $\log_2(k) + 2$.

Unary encoding

Encode an integer k with unary encoding on a Turing machine consists in writing with k cells filled with a 1 surrounded by two white symbols. The memory space used by k is k+2.

Complexity and encoding

Observation

Let Π be a decision problem, x be an instance of Π containing an integer W and A be an algorithm with complexity O(W) solving Π .

- If W is unary encoded, A is polynomial.
- If W is binary encoded, A is exponential.

Strong NP-Completeness

Definition

Let Π be a decision problem, we say that Π is *strongly NP-Complete* if it is NP-Complete when we encode the integers of the instance of Π with unary encoding.

Weak NP-Completeness

Definition

Let Π be a decision problem, we say that Π is weakly NP-Complete if it is NP-Complete and if there exists a polynomial algorithm to solve it when we encode the integers of the instance of Π with unary encoding.

Usual size of the input: 2nd try.

Definition

Let x be an input containing a set x_0 of non numerical objects and a set of k integers (x_1, x_2, \ldots, x_k) , we define the size of x in multiple ways :

- the total usual size |x|: the number of bits we need to encode it;
- the size I(x) that does not depend on the values of the integers : $|x_0| + k$;
- the size $\max(x)$ related to the integers : $\max_{[1;k]} x_i$.

Strong NP-Completeness: alternative definition

Definition

Let Π be a decision problem, we say that Π is *strongly NP-Complete* if it is NP-Complete when the instances are restricted to the ones where $\max(x)$ is polynomially bounded by I(x).

Theorem

The two definitions of strong NP-Completeness are equivalent.

Weak NP-Completeness

Definition: pseudo-polynomial complexity

Let Π be a decision problem, an algorithm solving Π is pseudo-polynomial if its time complexity is polynomial in I(x) and $\max(x)$.

Definition

Let Π be a decision problem, we say that Π is weakly NP-Complete if it is NP-Complete and if there exists a pseudo-polynomial algorithm to solve it.

Theorem

The two definitions of weak NP-Completeness are equivalent.

$\mathsf{Strong} \neq \mathsf{Weak}$

Theorem

If P \neq NP then a strongly NP-Complete problem is not weakly NP-Complete and conversely.

Show that a problem is strongly NP-Complete.

Theorem

Let Π be an NP-Complete problem containing no integer, then Π is strongly NP-Complete.

Theorem

Let Π_1 be a strongly NP-Complete problem and Π_2 be a decision problem. If there exists a polynomial Karp reduction such that, for every instance x of Π_1 , x is transformed into an instance y of Π_2 such that $\max(y)$ is polynomially bounded in I(x) and/or $\max(x)$, then Π_2 is strongly NP-Complete.

Strong NPO

Definition

Let $\Pi \in \mathsf{NPO}$ be an optimization problem, we say that Π is strongly NP-Hard if it is NP-Hard when the instances are restricted to the ones where $\max(x)$ is polynomially bounded by I(x).

Weak NPO

Definition

Let $\Pi \in \mathsf{NPO}$ be an optimization problem, we say that Π is *weakly NP-Hard* if it is NP-Hard and if there exists a pseudo-polynomial algorithm to solve it.

FPTAS and pseudo-polynomial algorithm

Theorem

Let $\Pi \in \mathsf{FPTAS}$ such that $\mathcal{M}^*(x)$ is polynomially bounded by I(x) and $\mathsf{max}(x)$, then there exists a pseudopolynomial algorithm that solves Π .

Corollary

Let $\Pi \in \mathsf{NPO}$ be a strongly NP-Hard problem such that $\mathcal{M}^*(x)$ is polynomially bounded by I(x), then $\Pi \notin \mathsf{FPTAS}$.

Rapport d'approximation absolu

Definition

An absolute polynomial approximation algorithm for a minimization problem Π with absolute ratio r is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \leq M^*(x) + r(x)$.

Rapport d'approximation absolu

Definition

An absolute polynomial approximation algorithm for a maximization problem Π with absolute ratio r is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \geq M^*(x) - r(x)$.

Approximability classes: AAPX

Definition

A problem $\Pi \in \text{NPO}$ belongs to the class AAPX if there exists a constant c and a c-absolute polynomial approximation for Π .

AAPX \subset NPO (Si P \neq NP, AAPX $\not\subset$ PTAS et PTAS $\not\subset$ AAPX.) On définit de même APTAS, AFPTAS, A-O(r)-APX, . . .

Rapport d'approximation asymptotique

Definition

An asymptotical polynomial approximation algorithm for a minimization problem Π with absolute ratio r is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \leq M^*(x) \cdot r(x) + k$.

Rapport d'approximation asymptotique

Definition

An asymptotical polynomial approximation algorithm for a maximization problem Π with absolute ratio r is a polynomial algorithm that, for every instance x of Π , returns a feasible solution of Π such that $M(x,y) \geq M^*(x,y) \cdot r(x) - k$.

Approximability classes: APX_{∞}

Definition

A problem $\Pi \in \mathsf{NPO}$ belongs to the class APX_∞ if there exists a constant c and a c-asymptotical polynomial approximation for Π .

$$\begin{aligned} \mathsf{APX}_\infty &= \mathsf{APX}\\ \mathsf{On}\ \mathsf{definit}\ \mathsf{de}\ \mathsf{m\^{e}me}\ \mathsf{PTAS}_\infty,\ \mathsf{FPTAS}_\infty,\ \mathit{O(r)}\text{-}\mathsf{APX}_\infty,\ \dots\\ \mathsf{Si}\ \mathsf{P} &\neq \mathsf{NP},\ \mathsf{PTAS}_\infty \neq \mathsf{PTAS}. \end{aligned}$$

Autres rapports

- Rapport moyen : se comparer à la moyenne des valeurs des solutions réalisables
- Différentiel : biaiser le rapport solution/optimal avec le poids ω d'une pire solution : $\frac{M(x,y)-\omega}{M^*(x)-\omega}$.