Chapter 1 : Complexity of a decision problem ENSIIE - Computational complexity theory Dimitri Watel (dimitri.watel@ensiie.fr) 2022 ## Decision problem #### (Informal) definition A decision problem is a problem describing inputs (the instances) and a question about the input for which the answer is **Yes** or **No** and depends on the input. # P, NP, NP-Complete in brief - P: decision problems that can be solved in polynomial time; - NP: decision problems for which a YES answer can be proved such that the proof can be verified in polynomial time; - NP-Complete: hardest problems in NP. Particularly, if an NP-Complete problem is in P, then $$P = NP$$. which is unlikely: show that a problem is NP-Complete also show that it is probably useless to search for a polynomial algorithm to solve that problem. ## Complexity of an algorithm #### Definition - The time complexity of an algorithm is the number of elementary operations performed by the algorithm before it ends. - The space complexity of an algorithm is the quantity of memory space used by the algorithm before it ends. Let \mathcal{A} be an algorithm and \mathcal{I} be an input of \mathcal{A} , we define $t(\mathcal{A}, \mathcal{I})$ as the time complexity of \mathcal{A} when the input is \mathcal{I} . Similarly, $s(\mathcal{A}, \mathcal{I})$ is its space complexity. Usually, the complexity depends on the size of the input. ## Usual size of the input #### Definition The size of the input is the number of bits used to encode the input. #### Example - for a graph: number of nodes and number of edges - for a list: number of elements - for an integer k: $\log_2(k)$ - for a list of integers: $\sum_{k \in L} \log_2(k)$ • . . . Usually, this size is denoted by |x| or n. # Complexité dans le pire cas #### Definition Let \mathcal{A} be an algorithm and \mathcal{I}_n be all the inputs of \mathcal{A} of size n, the worst-case (time) complexity of \mathcal{A} is a function f such that $$f(n) = \max_{\mathcal{I} \in \mathcal{I}_n} (t(\mathcal{A}, \mathcal{I}))$$ We similarly define the worst-case space complexity. # Autres complexités - Mean complexity - Amortized complexity - Smoothed complexity ## Asymptotical worst-case time complexity #### Definition Let $\mathcal A$ be an algorithm and let f be its worst case complexity, we say $\mathcal A$ - has a worst-case complexity bounded by g asymptotically if f(n) = O(g(n)) when $n \to +\infty$. - has a worst-case complexity not dominated by g asymptotically if $f(n) = \Omega(g(n))$ when $n \to +\infty$. - has a worst-case complexity bounded both above and below by g asymptotically if $f(n) = \Theta(g(n))$ when $n \to +\infty$. We know say, through misuse of langage, that the complexity of \mathcal{A} is O(g(n)) if the worst case time complexity of \mathcal{A} is asymptotically bounded by g. ## Usual complexity - Polynomial: O(n), $O(n^2)$, $O(n^3)$, $O(n^c)$ - Exponential: $O(2^n)$, $O(3^n)$, O(n!), $O(2^{n^2})$, $O(2^{(n^c)})$ - Constant: O(1) - Linear: O(n) - Quadratic: $O(n^2)$ - Cubic: $O(n^3)$ - Logarithmic: $O(\log(n))$ - Polylogarithmic: $O(\log^c(n))$ - Subexponential: $O(2^{\log^c(n)})$ - Superexponential: $O(2^{(2^n)})$ ## Decision problem #### (Formal) definition A decistion problem Π is a set \mathcal{L} of *instances* or *inputs* and a subset $\mathcal{L}_Y \subset \mathcal{L}$ of *positive instances*. We define $\mathcal{L} \backslash \mathcal{L}_Y = \mathcal{L}_N$ the *negative instances*. An algorithm that solve Π is able, for every instance $\mathcal{I} \in \mathcal{L}$ to decide whether $\mathcal{I} \in \mathcal{L}_{Y}$ or $\mathcal{I} \in \mathcal{L}_{N}$ in finite time. # Complexity of a decision problem #### Definition Let Π be a decision problem, then Π has a (worst-case) complexity O(f(n)) if there exists an algorithm \mathcal{A} for Π with complexity O(f(n)). ## The complexity class P #### Definition of the class P A decision problem Π is polynomial, or belongs to P, if its complexity is polynomial. In other words, there is a constant c such that its complexity is $O(n^c)$. ## The complexity class EXPTIME #### Definition of the class EXPTIME A decision problem Π is exponential, or belongs to EXPTIME, if its complexity is exponential. In other words, there is a constant c such that its complexity is $O(2^{(n^c)})$. $P \subseteq EXPTIME$ ## The complexity class NP #### (Informal) definition of the class NP A decision problem Π is belongs to NP, if it has a polynomial verifiable proof when the answer is **YES**. III $$P \subset NP \subseteq EXPTIME$$ ## Verify a solution #### Definition of a verifier Let Π be a decision problem, a verifier $\mathcal V$ for the **YES** answer of Π of complexity f and g is an **algorithm** - for which the inputs are - an instance \mathcal{I} of Π - a certificate w (a sequence of 1 and 0) of size O(g(n)) - that answers **YES** or **NO** in time O(g(n)) - that answers **YES** for at least one certificate w if the answer of $\mathcal I$ is **YES** - ullet that answers NO for every certificate w if the answer for $\mathcal I$ is NO ## The complexity class NP #### Definition of the class NP A decision problem Π is belongs to NP if there exists a constant c and a verifier \mathcal{V} for the answers **YES** with complexity $O(n^c)$ and $O(n^c)$. III $$\mathsf{P}\subset\mathsf{NP}\subsetneq\mathsf{EXPTIME}$$