Chapter 3 : Complexity classes ENSIIE - Computational complexity theory

Dimitri Watel (dimitri.watel@ensiie.fr)

2022

Complexity of a computation of a Turing machine

Definition

- The time complexity of a computation of a Turing machine is the number of iterations performed by the machine before it stops.
- The space complexity of a computation of a Turing machine is the number of cells the machine write on before it ends.

Usually, the complexity depends on the size of x.

Complexity of a computation of a Turing machine

Definition

Let \mathcal{M} be a **deterministic** machine and x be a word, we define $t(\mathcal{M},x)$ as the time complexity of the computation of \mathcal{M} when the input is x. Similarly, $s(\mathcal{M},x)$ is its space complexity.

Definition

Let \mathcal{M} be a **deterministic** machine, x be a word and C be a sequence of choices, we define $t(\mathcal{M},x,C)$ as the time complexity of the computation of \mathcal{M} when the input is x and when it follows the choices of C. Similarly, $s(\mathcal{M},x,C)$ is its space complexity.

Complexité dans le pire cas

Definition

Let \mathcal{M} be a **deterministic** machine, the worst-case (time) complexity of \mathcal{M} is a function f such that

$$f(n) = \max_{x \in \{0,1,B\}^n} (t(\mathcal{M},x))$$

Definition

Let $\mathcal M$ be a **deterministic** machine, the worst-case (time) complexity of $\mathcal M$ is a function f such that

$$f(n) = \max_{x \in \{0,1,B\}^n \text{ Choices } C} (t(\mathcal{M}, x, C))$$

We similarly define the worst-case space complexity.

Asymptotical worst-case time complexity

Definition

Let $\mathcal M$ be a machine and let f be its worst case complexity, we say $\mathcal A$

- has a worst-case complexity bounded by g asymptotically if f(n) = O(g(n)) when $n \to +\infty$.
- has a worst-case complexity not dominated by g asymptotically if $f(n) = \Omega(g(n))$ when $n \to +\infty$.
- has a worst-case complexity bounded both above and below by g asymptotically if $f(n) = \Theta(g(n))$ when $n \to +\infty$.

We know say, through misuse of langage, that the complexity of \mathcal{M} is O(g(n)) if the wost case time complexity of \mathcal{M} is asymptotically bounded by g.

Decision problem

(Formal) definition

A decistion problem Π is a set \mathcal{L} of *instances* or *inputs* and a subset $\mathcal{L}_Y \subset \mathcal{L}$ of *positive instances*. We define $\mathcal{L} \backslash \mathcal{L}_Y = \mathcal{L}_N$ the *negative instances*.

Solve a problem with a deterministic Turing machine

A deterministic Turing machine ${\mathcal M}$ solves Π if

- when $x \in \mathcal{L}_Y$, \mathcal{M} accepts x;
- when $x \in \mathcal{L}_N$ or $x \notin \mathcal{L}$, \mathcal{M} rejects x.

Complexity of a decision problem

Definition: DTIME

Let Π be a decision problem, then Π has a (worst-case) complexity O(f(n)) if there exists a **deterministic** Turing machine with complexity O(f(n)) solving Π . We write $\Pi \in \mathsf{DTIME}(f(n))$.

The complexity class P

Definition of the class P

A decision problem Π is polynomial, or belongs to P, if its complexity is polynomial. In other words, there is a **deterministic** Turing machine that solves Π in polynomial time.

$$\mathsf{P} = \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(n^c)$$

The complexity class EXPTIME

Definition of the class EXPTIME

A decision problem Π is exponential, or belongs to EXPTIME, if its complexity is exponential. In other words, there is a **deterministic** Turing machine that solves Π in exponential time:

$$\mathsf{EXPTIME} = \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(2^{n^c})$$

$$\mathsf{P} \subsetneq \mathsf{EXPTIME}$$

Space complexity of a decision problem

Definition: DSPACE

Let Π be a decision problem, then Π has a (worst-case) space complexity O(f(n)) if there exists a **deterministic** Turing machine with space complexity O(f(n)) solving Π . We write $\Pi \in \mathsf{DSPACE}(f(n))$.

The complexity class PSPACE

Definition of the class PSPACE

A decision problem Π belongs to PSPACE, if its space complexity is polynomial. In other words, there is a **deterministic** Turing machine that solves Π in polynomial space.

$$\mathsf{PSPACE} = \bigcup_{c \in \mathbb{N}} \mathit{DSPACE}(\mathit{n}^{c})$$

$$P \subset PSPACE \subset EXPTIME$$

The complexity class EXPSPACE

Definition of the class EXPSPACE

A decision problem Π belongs to EXPSPACE, if its space complexity is exponential. In other words, there is a **deterministic** Turing machine that solves Π in exponential space:

$$\mathsf{EXPSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{DSPACE}(2^{n^c})$$

PSPACE ⊊ EXPSPACE

 $P \subset PSPACE \subset EXPTIME \subset EXPSPACE$

Decision problem

(Formal) definition

A decistion problem Π is a set \mathcal{L} of *instances* or *inputs* and a subset $\mathcal{L}_Y \subset \mathcal{L}$ of *positive instances*. We define $\mathcal{L} \backslash \mathcal{L}_Y = \mathcal{L}_N$ the *negative instances*.

Solve a problem with a non-deterministic Turing machine

A non-deterministic Turing machine $\mathcal M$ solves Π if

- when $x \in \mathcal{L}_Y$, \mathcal{M} accepts x;
- when $x \in \mathcal{L}_N$ or $x \notin \mathcal{L}$, \mathcal{M} strongly rejects x.

Non-deterministic complexity of a decision problem

Definition: NTIME

Let Π be a decision problem, then $\Pi \in \mathsf{NTIME}(f(n))$ if there exists a **non-deterministic** Turing machine with complexity O(f(n)) solving Π .

The complexity class NP

Definition of the class NP (non-deterministic Polynomial)

A decision problem Π belongs to NP, if there is a **non-deterministic** Turing machine that solves Π in polynomial time.

$$\mathsf{NP} = \bigcup_{c \in \mathbb{N}} \mathsf{NTIME}(n^c)$$

$$P \subset NP \subset PSPACE$$

The complexity class NEXPTIME

Definition of the class NEXPTIME

A decision problem Π belongs to NEXPTIME if there is a **non-deterministic** Turing machine that solves Π in exponential time:

$$\mathsf{NEXPTIME} = \bigcup_{c \in \mathbb{N}} \mathsf{NTIME}(2^{n^c})$$

$$\mathsf{EXPTIME} \subset \mathsf{NEXPTIME} \subset \mathsf{EXPSPACE}$$

$$\mathsf{NP} \subsetneq \mathsf{NEXPTIME}$$

Non-deterministic space complexity of a decision problem

Definition: NSP

Let Π be a decision problem, then $\Pi \in \mathsf{NSPACE}(f(n))$ if there exists a **non-deterministic** Turing machine with space complexity O(f(n)) solving Π .

The complexity class NPSPACE

Definition of the class NPSPACE

A decision problem Π belongs to PSPACE if there is a **non-deterministic** Turing machine that solves Π in polynomial space.

$$\mathsf{NPSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{NSPACE}(n^c)$$

ΪЩ

PSPACE = NPSPACE

The complexity class NEXPSPACE

Definition of the class NEXPSPACE

A decision problem Π belongs to NEXPSPACE if there is a **non-deterministic** Turing machine that solves Π in exponential space:

$$\mathsf{NEXPSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{NSPACE}(2^{n^c})$$

III

EXPSPACE = NEXPSPACE

The complexity class Co-NP

Definition of the class Co-NP

A decision problem $\Pi = (\mathcal{L}, \mathcal{L}_Y, \mathcal{L}_N)$ belongs to Co-NP if $\Pi^c = (\mathcal{L}, \mathcal{L}_N, \mathcal{L}_Y)$ belongs to NP.

Other definition of the class Co-NP

A decision problem Π belongs to Co-NP if there exists a **non deterministic** machine \mathcal{M} that strongly accepts the words of \mathcal{L}_Y and rejects the others.

 $P \subset NP \cap Co-NP$

Co-NP ⊂ PSPACE

So many others

- Polynomial hierarchy : Σ_2 , Π_2 , Σ_k , Π_k , PH
- Probabilistic classes : BPP, ZPP, RP
- Quantum classes : BQP, EQP
- Non decidable classes: RE, ALL

https://complexityzoo.uwaterloo.ca/Complexity_Zoo