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Complexity of a computation of a Turing machine

Definition

@ The time complexity of a computation of a Turing machine is
the number of iterations performed by the machine before it
stops.

@ The space complexity of a computation of a Turing machine is
the number of cells the machine write on before it ends.

Usually, the complexity depends on the size of x.
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Complexity of a computation of a Turing machine

Definition

Let M be a deterministic machine and x be a word, we define
t(M, x) as the time complexity of the computation of M when the
input is x. Similarly, s(M, x) is its space complexity.

Definition

Let M be a deterministic machine, x be a word and C be a
sequence of choices, we define t(M, x, C) as the time complexity
of the computation of M when the input is x and when it follows
the choices of C. Similarly, s(M, x, C) is its space complexity.
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Complexité dans le pire cas

Let M be a deterministic machine, the worst-case (time)
complexity of M is a function f such that

fla) = _ {rggfs}n(t(M, x))

Let M be a deterministic machine, the worst-case (time)
complexity of M is a function f such that

fln) = xe{r(r)",??(B}” Chorces C(t(M’X’ <))

We similarly define the worst-case space complexity.
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Asymptotical worst-case time complexity

Definition
Let M be a machine and let f be its worst case complexity, we say
A
@ has a worst-case complexity bounded by g asymptotically if
f(n) = O(g(n)) when n — +o0.
@ has a worst-case complexity not dominated by g
asymptotically if f(n) = Q(g(n)) when n — +o0.

@ has a worst-case complexity bounded both above and below by
g asymptotically if f(n) = ©(g(n)) when n — +oc.

We know say, through misuse of langage, that the complexity of M
is O(g(n)) if the wost case time complexity of M is
asymptotically bounded by g.
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Decision problem

(Formal) definition

A decistion problem I is a set £ of instances or inputs and a subset
Ly C L of positive instances. We define L\Ly = Ly the negative
instances.

v

Solve a problem with a deterministic Turing machine

A deterministic Turing machine M solves I if
@ when x € Ly, M accepts x;
@ when x € Ly or x € L, M rejects x.
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Complexity of a decision problem

Definition: DTIME

Let M be a decision problem, then I has a (worst-case) complexity
O(f(n)) if there exists a deterministic Turing machine with
complexity O(f(n)) solving M. We write 1 € DTIME(f(n)).
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The complexity class P

Definition of the class P

A decision problem [T is polynomial, or belongs to P, if its
complexity is polynomial. In other words, there is a deterministic
Turing machine that solves I in polynomial time.

P = | J DTIME(n°)
ceN
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The complexity class EXPTIME

Definition of the class EXPTIME

A decision problem 1 is exponential, or belongs to EXPTIME, if its
complexity is exponential. In other words, there is a deterministic
Turing machine that solves 1 in exponential time:

EXPTIME = |_J DTIME(2™)
ceN

.

P C EXPTIME
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Space complexity of a decision problem

Definition: DSPACE

Let M be a decision problem, then I has a (worst-case) space
complexity O(f(n)) if there exists a deterministic Turing machine
with space complexity O(f(n)) solving . We write

M € DSPACE(f(n)).
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The complexity class PSPACE

Definition of the class PSPACE

A decision problem [T belongs to PSPACE, if its space complexity is
polynomial. In other words, there is a deterministic Turing
machine that solves I1 in polynomial space.

PSPACE = | | DSPACE(n°)
ceN

P C PSPACE C EXPTIME
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The complexity class EXPSPACE

Definition of the class EXPSPACE

A decision problem I belongs to EXPSPACE, if its space
complexity is exponential. In other words, there is a deterministic
Turing machine that solves I in exponential space:

EXPSPACE = (_J DSPACE(2™)

ceN

PSPACE ¢ EXPSPACE

P c PSPACE c EXPTIME C EXPSPACE
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Decision problem

(Formal) definition

A decistion problem I is a set £ of instances or inputs and a subset
Ly C L of positive instances. We define L\Ly = Ly the negative
instances.

v

Solve a problem with a non-deterministic Turing machine

A non-deterministic Turing machine M solves I1 if
@ when x € Ly, M accepts x;
@ when x € Ly or x € L, M strongly rejects x.
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Non-deterministic complexity of a decision problem

Definition: NTIME

Let M be a decision problem, then I € NTIME(f(n)) if there exists
a non-deterministic Turing machine with complexity O(f(n))
solving 1.
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The complexity class NP

Definition of the class NP (non-deterministic Polynomial)

A decision problem I belongs to NP, if there is a
non-deterministic Turing machine that solves I1 in polynomial

time.
NP = [_J NTIME(n°)
ceN

P c NP c PSPACE
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The complexity class NEXPTIME

Definition of the class NEXPTIME

A decision problem [T belongs to NEXPTIME if there is a
non-deterministic Turing machine that solves 1 in exponential
time:

NEXPTIME = | J NTIME(2™)
ceN

EXPTIME c NEXPTIME C EXPSPACE

NP C NEXPTIME
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Non-deterministic space complexity of a decision problem

Definition: NSP

Let M be a decision problem, then I € NSPACE(f(n)) if there
exists a non-deterministic Turing machine with space complexity
O(f(n)) solving T.
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The complexity class NPSPACE

Definition of the class NPSPACE

A decision problem 1 belongs to PSPACE if there is a
non-deterministic Turing machine that solves [1 in polynomial

space.
NPSPACE = |_J NSPACE(n°)

ceN

PSPACE = NPSPACE
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The complexity class NEXPSPACE

Definition of the class NEXPSPACE
A decision problem I belongs to NEXPSPACE if there is a
non-deterministic Turing machine that solves I1 in exponential

space:
NEXPSPACE = | ] NSPACE(2™)
ceN

EXPSPACE = NEXPSPACE
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The complexity class Co-NP

Definition of the class Co-NP

A decision problem N = (£, Ly, Ly) belongs to Co-NP if
MNe = (L,Ln,Ly) belongs to NP.

Other definition of the class Co-NP

A decision problem [T belongs to Co-NP if there exists a non
deterministic machine M that strongly accepts the words of Ly
and rejects the others.

P C NP N Co-NP

Co-NP C PSPACE
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So many others

Polynomial hierarchy : Y5, My, ¥, My, PH
Probabilistic classes : BPP, ZPP, RP
Quantum classes : BQP, EQP

Non decidable classes : RE, ALL

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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