Chapter 4: Reductions and completeness ENSIIE - Computational complexity theory Dimitri Watel (dimitri.watel@ensiie.fr) 2022 ## Poynomial reduction and completeness #### Basic idea A way to solve a problem Π_1 is to transform it into another problem Π_2 we know how to solve. If the transformation is fast and if Π_2 is fast to solve, then Π_1 is fast to solve If the transformation is fast and if Π_1 is slow to solve, then Π_2 is slow to solve # Karp polynomial reduction #### (Informal) definition Let Π_1 and Π_2 , a polynomial reduction from Π_1 to Π_2 transforms every positive (resp. negative) instance of Π_1 into a positive (resp. negative) instance of Π_2 in polynomial time. If Π_1 reduces to Π_2 , then we say that Π_2 is harder than Π_1 . # Karp Polynomial reduction #### Definition Let Π_1 and Π_2 be two decision problems, a polynomial reduction from $\Pi_1 = (\mathcal{L}^1, \mathcal{L}^1_Y, \mathcal{L}^1_N)$ to $\Pi_2 = (\mathcal{L}^2, \mathcal{L}^2_Y, \mathcal{L}^2_N)$ is an algorithm \mathcal{R} such that - ullet the complexity of ${\mathcal R}$ is polynomial - the input of ${\cal R}$ is an instance ${\cal I}$ of Π_1 and return an instance ${\cal J}$ of Π_2 - $\bullet \ \mathcal{I} \in \mathcal{L}^1_Y \Leftrightarrow \mathcal{J} \in \mathcal{L}^2_Y$ We write $\Pi_1 \preceq \Pi_2$. ### Hardness #### C-hard problem Let $\mathcal C$ be any complexity class (NP, EXPTIME, ...) and Π_1 be a decision problem. Π_1 is $\mathcal C$ -Hard if, for every problem Π_2 of $\mathcal C$, $\Pi_2 \preccurlyeq \Pi_1$. ## Completeness ### C-complete problem Let $\mathcal C$ be any complexity class (NP, EXPTIME, ...) and Π be a decision problem. Π is $\mathcal C$ -Complete if $\Pi \in \mathcal C$ and if it is $\mathcal C$ -Hard. ## Important results ## Show that a problem is hard • If Π_1 is NP-Hard and if $\Pi_1 \preccurlyeq \Pi_2$ then Π_2 is \mathcal{C} -Hard. #### P et NP - If $\Pi_2 \in P$ and $\Pi_1 \preccurlyeq \Pi_2$, then $\Pi_1 \in P$. - If $\Pi_2 \in \mathsf{NP}$ and $\Pi_1 \preccurlyeq \Pi_2$, then $\Pi_1 \in \mathsf{NP}$. - $P \neq NP \Leftrightarrow \forall NP$ -Complete problem Π , $\Pi \notin P$. - 3-SAT is NP-Complete. ## Turing polynomial reduction ### Definition: Turing polynomial reduction Let Π_1 and Π_2 bet two problems, a Turing polynomial reduction from Π_1 to Π_2 is an algorithme $\mathcal R$ such that - \mathcal{R} may call an (imaginary) algorithm \mathcal{R}' called *oracle* that solves Π_2 in constant time; - \mathcal{R} solves Π_1 in polynomial time. We write $\Pi_1 \preccurlyeq_{\mathcal{T}} \Pi_2$. Π_1 and Π_2 are not necessarily decision problems. ## Autres réductions - Réduction exponentielle - Réduction en espace polynomial - Réduction probabiliste - ...