Chapitre 4 : Réductions et complétude ENSIIE - Théorie de la complexité

Dimitri Watel (dimitri.watel@ensiie.fr)

2022

Réduction polynomiale et complétude

Idée de base

Une manière de résoudre un problème Π_1 est de le transformer en un autre Π_2 qu'on sait résoudre.

Si la transformation est rapide et que le problème Π_2 peut être résolu rapidement, alors Π_1 peut être résolu rapidement.

Si la transformation est rapide et que le problème Π_1 ne peut être résolu rapidement, alors Π_2 ne peut être résolu rapidement.

Réduction polynomiale de Karp

Définition (informelle)

Soit deux problèmes de décision Π_1 et Π_2 , une réduction polynomiale de Π_1 vers Π_2 transforme en temps polynomial toute instance positive (resp. negative) de Π_1 en une instance positive (resp. negative) de Π_2 .

Si Π_1 se réduit à Π_2 , alors on dit que Π_2 est *plus difficile* que Π_1 .

Réduction polynomiale de Karp

Définition

Soit deux problèmes de décision Π_1 et Π_2 , une réduction polynomiale de $\Pi_1=(\mathcal{L}^1,\mathcal{L}^1_Y,\mathcal{L}^1_N)$ vers $\Pi_2=(\mathcal{L}^2,\mathcal{L}^2_Y,\mathcal{L}^2_N)$ est un algorithme \mathcal{R} tel que

- ullet $\mathcal R$ a une complexité polynomiale
- ${\cal R}$ prend en entrée une instance ${\cal I}$ de Π_1 et renvoie en sortie une instance ${\cal J}$ de Π_2
- $\bullet \ \mathcal{I} \in \mathcal{L}^1_Y \Leftrightarrow \mathcal{J} \in \mathcal{L}^2_Y$

On note $\Pi_1 \preccurlyeq \Pi_2$.

Difficulté

Problème C-difficile

Soit $\mathcal C$ une classe de complexité (NP, EXPTIME, ...) et Π_1 un problème de décision. On dit que Π_1 est $\mathcal C$ -Difficile si, pour tout problème Π_2 de $\mathcal C$, $\Pi_2 \preccurlyeq \Pi_1$.

Complétude

Problème C-complet

Soit $\mathcal C$ une classe de complexité (NP, EXPTIME, ...) et Π un problème de décision. On dit que Π est $\mathcal C$ -Complet si $\Pi \in \mathcal C$ et s'il est $\mathcal C$ -difficile.

Résultats importants

Démontrer la difficulté

• Si Π_1 est C-Difficile et si $\Pi_1 \preccurlyeq \Pi_2$ alors Π_2 est C-Difficile.

P et NP

- Si $\Pi_2 \in P$ et $\Pi_1 \preccurlyeq \Pi_2$, alors $\Pi_1 \in P$.
- Si $\Pi_2 \in \mathsf{NP}$ et $\Pi_1 \preccurlyeq \Pi_2$, alors $\Pi_1 \in \mathsf{NP}$.
- $P \neq NP \Leftrightarrow \forall$ problème Π NP-Complet, $\Pi \notin P$.
- 3-SAT est NP-Complet.

Réduction polynomiale de Turing

Définition : Réduction polynomiale de Turing

Soient deux problèmes Π_1 et Π_2 , une réduction polynomiale de Turing de Π_1 vers Π_2 est un algorithme \mathcal{R} tel que

- \mathcal{R} peut appeler un algorithme \mathcal{R}' (imaginaire), appelé *oracle*, résolvant Π_2 en temps constant;
- \mathcal{R} résoud Π_1 en temps polynomial.

On note $\Pi_1 \preccurlyeq_{\mathcal{T}} \Pi_2$.

 Π_1 et Π_2 ne sont pas nécessairement des problèmes de décision.

Autres réductions

- Réduction exponentielle
- Réduction en espace polynomial
- Réduction probabiliste
- ...