Chapter 6: Optimization problems ENSIIE - Computational complexity theory

Dimitri Watel (dimitri.watel@ensiie.fr)

2022

Optimization problem

(Informal) definition

An optimization problem is a problem containing inputs (the *instances*), solutions (the *feasible solutions*), a *measure* or *weight* associating to each solution an integer. The objective is to find a solution maximizing or minimizing the measure.

Problems associated with an optimization problem

(Informal) definition

An optimization problem Π is associated with 3 problems:

- a decision problem Π_D : does there exist a feasible solution with weight
 - lower than K?, if the objective is to minimize the measure,
 - ullet greater than K?, if the objective is to maximize the measure ;
- an evaluation problem Pi_E : find the weight of an optimal solution;
- a construction problem Π_C : find an optimal solution and its weight.

PO and NPO

Definition

PO and NPO are the equivalent classes of P and NP for the optimization problems: the optimization problems that can be solved in deterministic or non deterministic polynomial time.

Particularly,

- $\Pi \in PO \Rightarrow \Pi_D \in P$
- $\Pi \in NPO \Rightarrow \Pi_D \in NP$

Optimization problem

Definition: optimization problem

An optimization problem Π is a quadruplet $(\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ such that:

- \mathcal{I} is the set of d'instances of Π ;
- S is a function associating to $x \in \mathcal{I}$ a set of feasible solutions of x;
- \mathcal{M} is a *measure* function associating to $x \in \mathcal{I}$ and $y \in \mathcal{S}(x)$ an integer ;
- O is the objectif with value min or max that specify whether we want to find a solution with minimum of maximum measure.

 \mathcal{I} and $\mathcal{S}(x)$ may contain any mathematical objects.

Optimal solution

Definition

Let $\Pi = (\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ be an optimization problem and $x \in \mathcal{I}$. We call *optimal solution* a solution $y^* \in \mathcal{S}(x)$ such that:

$$\mathcal{M}(x, y^*) = \min_{y \in \mathcal{S}(x)} \mathcal{M}(x, y) \text{ si } \mathcal{O} = \min$$

$$\mathcal{M}(x, y^*) = \max_{y \in \mathcal{S}(x)} \mathcal{M}(x, y) \text{ si } \mathcal{O} = \max$$

We denote the set of optimal solutions of x by $S^*(x)$ and the value $\mathcal{M}(x, y^*)$ of the optimal solutions by $\mathcal{M}^*(x)$.

Size of an instance or of a solution

Definition

The size of an instance or of a feasible solution is the number of bits used to encode it.

We usually denote the size of the input x by |x| or n and the size of a feasible solution y by |y|.

Problems associated with an optimization problem

(Informal) definition

An optimization problem $\Pi = (\mathcal{I}, \mathcal{S}, \mathcal{M}, \mathcal{O})$ is associated with 3 problems:

- a decision problem Π_D : let $x \in \mathcal{I}$ and an integer K, determine if $\mathcal{M}^*(x) \leq K$ if $\mathcal{O} = \min$, or if $\mathcal{M}^*(x) \geq K$ if $\mathcal{O} = \max$.
- an evaluation problem Pi_E : let $x \in \mathcal{I}$, compute $\mathcal{M}^*(x)$;
- a construction problem Π_C : let $x \in \mathcal{I}$, compute an optimal solution $y \in \mathcal{S}^*(x)$ and $\mathcal{M}^*(x)$.

Some results

Theorem

Let Π be an optimization problem:

$$\Pi_D \preccurlyeq_{\mathcal{T}} \Pi_E \preccurlyeq_{\mathcal{T}} \Pi_C$$

NPO

Definition

Let $\Pi=(\mathcal{I},\mathcal{S},\mathcal{M},\mathcal{O})$ be an optimization problem, Π belong to the NPO class if

- let x be a binary number, we can check in polynomial time if x encodes an instance of I;
- there exists a polynom q such that for every $x \in \mathcal{I}$
 - for every $y \in \mathcal{S}(x)$, $|y| \leq q(|x|)$,
 - for every binary number y such that $|y| \le q(|x|)$, we can check in polynomial time if y encodes a feasible solution of x;
- for every $x \in \mathcal{I}$ and every $y \in \mathcal{S}(x)$, we can compute $\mathcal{M}(x,y)$ in polynomial time.

Definition

A problem $\Pi \in \mathsf{NPO}$ belongs to the class PO if we can solve $\Pi_{\mathcal{C}}$ in polynomial time.

By definition $PO \subseteq NPO$.

PO, NPO, P and NP

Theorem

$$\Pi \in PO \Rightarrow \Pi_D \in P$$

$$\Pi \in \textit{NPO} \Rightarrow \Pi_{\textit{D}} \in \textit{NP}$$

$$\Pi \in \mathit{NPO} \Rightarrow \Pi_E \preccurlyeq_{\mathcal{T}} \Pi_D$$

NP-Hard optimization problem

Definition

Let Π_1 be an optimization problem, Π_1 is NP-Hard, for every decision problem $\Pi_2 \in \text{NP}$, $\Pi_2 \preccurlyeq_{\mathcal{T}} \Pi_1$.

Theorem

Let $\Pi \in NPO$, if Π_D is NP-Hard, then Π is NP-Hard.

Theorem

$$PO = NPO \Rightarrow P = NP$$

A hard proof

Theorem

Let $\Pi \in \mathsf{NPO}$, if Π_D is $\mathsf{NP\text{-}Complete}$, then $\Pi_C \preccurlyeq_{\mathcal{T}} \Pi_D$.