Tutorial 3: Reduction and completeness

Computational complexity theory, 5th semester.

2017-2018

Exercice 1 — Simple reductions

1. Prove that (SIZE) \leq (INS).

▶ Correction

Cette réduction est un peu tordue, il est conseillé de ne pas la lire en premier.

On rappelle la définition formelle des deux problèmes :

(SIZE)Soit G un graphe non orienté et un entier k, G est-il de taille k?

(INS) Soit G un graphe non orienté et un entier k, G possède-t-il un stable de taille k? (k nœuds non reliés deux à deux).

On veut montrer que (SIZE) se réduit à (INS), c'est-à-dire qu'il est plus facile qu'(INS). C'est logique, il est clairement plus facile de trouver la taille d'un graphe (il suffit d'énumérer les nœuds) que de trouver un stable de taille k (il faut énumérer tous les ensembles de k nœuds). On va montrer que, en disposant d'une boîte noire pour résoudre (INS), on peut résoudre (SIZE) (de manière un peu tordue).

On va commencer par une première idée qui ne fonctionne pas. Puis une seconde qui marche mais qui court circuite complètement l'idée de réduction abordée dans le cours (Encore une fois ne lisez pas cette réduction en premier).

Première idée:

Soit G = (V, E), k une instance de SIZE. Considérons la transformation suivante qui construit une instance (G', k') de (INS). Cette transformation consiste à supprimer toutes les arêtes de G. Le graphe résultat est G'. On pose k' = k.

Cette réduction est polynomiale, elle se fait en $O(|E| + \log(k))$.

Dans G', tous les nœuds ne sont pas reliés, donc un stable maximum est de taille égale à celle du graphe. Ainsi, (G, k) est une instance positive de (SIZE), alors (G', k') est une instance positive de (INS). Cependant, si (G, k) est une instance négative alors (G', k') peut être positive ou négative. En effet si la taille du graphe est inférieure à k, alors il n'existe pas de stable de taille k, donc l'instance est négative. Si maintenant la taille du graphe est supérieure à k, alors il existe bien un stable de taille k. En fait il existe un stable de taille 1, de taille 2, ..., jusqu'à la taille du graphe, en passant par la taille k. Donc la seconde instance sera positive. On a donc seulement la moitié des propriétés nécessaires à une réduction.

Deuxième idée:

Appliquons la transformation suivante : Poser s=0, pour tout nœud de V ajouter 1 à s. Si s=k alors renvoyer une instance (G',k') où G' ne contient qu'un seul nœud et k'=1 sinon renvoyer une instance (G',k') où G' ne contient qu'un seul nœud et k'=2.

Clairement on a résolu (SIZE) et on a construit une instance bidon de (INS). Si la réponse de (SIZE) est positive, alors on renvoie une instance positive triviale de (INS) et sinon on renvoie une instance négative triviale de (INS). Et cet algorithme est polynomial; il tourne en O(|V|). Cette transformation respecte donc bien les définitions de la réduction polynomiale de Karp. Mais on a l'impression de tricher. C'edst parce que (SIZE) est dans P, donc on peut le résoudre en temps polynomial. Comme on cherche une réduction "Polynomiale" de Karp, on peut se permettre, pendant la transformation de la réduction de résoudre le problème de départ. Généralement on travaille avec des problèmes de NP donc cette idée ne marche pas.

On aurait pu ici se demander s'il existe une réduction "logarithmique" de Karp qui travaille en temps logarithmique plutôt que polynomial; cela aurait été plus intéressant.

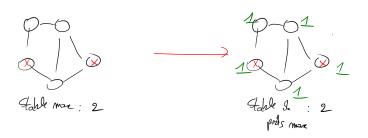
- 2. Prove that (SIZE) \leq (CHROMA).
- 3. Prove that (INS) \leq (W-INS).

▶ Correction

(INS) Soit G un graphe non orienté et un entier k, G possède-t-il un stable de taille k? (WINS) Soit G un graphe non orienté, des poids $\omega: V \to \mathbb{N}$ sur les nœuds et un entier k, G possède-t-il un stable de dont la somme des poids dépasse k?

Le second problème a l'air d'être une généralisation du premier. L'idée de cette réduction est de montrer qu'il existe des instances de (WINS) pour lesquels les réponses sont les mêmes que les instances d'(INS).

La transformation est la suivante, partant d'une instance (G = (V, E), k) d'INS, on construit une instance (G', ω', k') de (WINS). Pour cela, on pose G' = G, k' = k et $\omega(v) = 1$ pour tout nœud v



Cette réduction se fait en temps linéaire $O(|V| + |E| + \log(k) + |V|)$, donc polynomial en, la taille de (G, k).

L'instance (G, k) est positive

si et seulement s'il existe dans G un stable de taille k

si et seulement s'il existe dans G' un stable de taille k'

si et seulement s'il existe dans G' un stable de poids k' puisque chaque poids est égal à 1.

Donc on a bien conservation de la positivité et la négativité est instances.

Donc il existe une réduction polynomiale de Karp de (INS) vers (WINS)

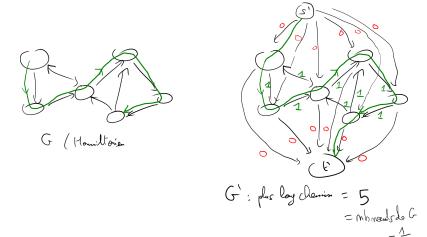
- 4. Prove that $(3-COL?) \leq (SAT)$.
- 5. Prove that (COHAM) \leq (TAU).
- 6. Prove that (HAM?) \leq (LOP).

► Correction

(HAM?) Soit G un graphe orienté; existe-t-il un chemin hamiltonien dans G? (je prend la version orientée avec chemin c'est plus facile)

(LOP) Soit G un graphe orienté, des poids $\omega : \mathbb{E} \to \mathbb{N}$, un nœud s et un nœud t et un entier k, G possède-t-il un chemin élémentaire (ne passant qu'une fois au plus par chaque nœud) de s à t dont la somme des poids des arcs dépasse k?

La transformation est la suivante, partant d'une instance (G = (V, E)) de (HAM?), on construit une instance $(G', \omega', s', t', k')$ de (LOP). Pour cela, on pose k' = |V| - 1. Pour G', on commence par copier G, on ajoute deux sommets s' et t' et on relie s' à tous les sommets de V et tous les sommets de V à t'. On pose enfin $\omega(a) = 1$ pour tout arc a de E et 0 pour tout les arcs reliant s' et t' à V.



Cette réduction se fait en temps linéaire $O(\log(|V|) + (|V| + |E|) + 2|V| + (|E| + 2|V|))$, donc polynomial en, la taille de G.

Si l'instance (G, k) est positive, il existe dans G un chemin élémentaire (u_1, u_2, \ldots, u_n) passant par tous les nœuds. Dans G', il existe donc le chemin $(s', u_1, u_2, \ldots, u_n, t')$ dans G'. Ce chemin utilise exactement |V|-1 arcs de G et 2 arcs (s', u_1) et (u_n, t') . Ce chemin est de poids $|V|-1 \ge k'$. L'instance $(G', \omega', s', t', k')$ est donc positive.

Si l'instance $(G', \omega', s', t', k')$ est positive, il existe dans G', un chemin élémentaire reliant s' à t' de poids au moins k'. Montrons que ce chemin possède exactement k' arcs de poids 1 (ça peut sembler évident mais il faut le prouver). Ce chemin s'écrit donc $(s', u_1, u_2, \ldots, u_p, t')$ Puisqu'il est de poids au moins k' et que les arcs sont de poids 1 ou 0, il emprunte au moins k' arcs de poids 1. Puisque le chemin est élémentaire, il ne peut passer par plus de |G'| = |V| + 2 nœuds et donc |V| + 1 arcs de poids 1. Puisqu'enfin les arcs issus de s' et allant en t' sont de poids 0, le chemin ne peut possèder plus de |V| - 1 = k' arcs de poids 1. Donc ce chemin possède exactement k' arcs de poids 1.

Les arcs de poids 1 relient u_1, u_2, \ldots, u_p . Donc p = k' + 1 = |V|. Donc le chemin u_1, u_2, \ldots, u_p est hamiltonien dans G.

Donc on a bien conservation de la positivité et la négativité est instances.

Donc il existe une réduction polynomiale de Karp de (HAM?) vers (LOP)

- 7. Prove that (HAM?) \leq (TSP).
- 8. Prove that (SAT?) \leq (3-SAT?).
- 9. Prove that (TAU?) \leq (3-TAU?).
- 10. Prove that (SAT?) \leq (QBF?).

▶ Correction

(SAT?) Soit une formule φ avec n variables x_1, x_2, \ldots, x_n , est-ce que $\exists x_1, x_2, \ldots, x_n | \varphi(x_1, x_2, \ldots, x_n)$? (QBF?) Soit une formule φ avec n variables x_1, x_2, \ldots, x_n est-ce que $\exists x_1 \forall x_2 \exists \ldots \forall x_n | \varphi(x_1, x_2, \ldots, x_n)$. La transformation est la suivante, partant d'une instance $(\varphi, x_1, x_2, \ldots, x_n)$ de (SAT?), on construit une instance $(\varphi', y_1, y_2, \ldots, y_m)$ de (QBF?). Pour cela, on pose m = 2n avec $\varphi'(y_1, y_2, \ldots, y_m) = \varphi(y_1, y_3, y_5, \ldots, y_{2n-1})$.

$$\exists x_1 x_2 x_3$$

 $x_1 \lor \mathcal{X}_2 \Rightarrow x_3$
 $\exists y_1 \forall y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\forall y_1 \lor y_3 \Rightarrow y_5$
 $\exists x_1 x_2 x_3$
 $\exists y_1 \forall y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_2 \exists y_3 \forall y_4 \exists y_5 \forall y_6$
 $\exists y_1 \lor y_3 \Rightarrow y_5$
 $\exists y_1 \lor y_3 \Rightarrow y_5$

Cette transformation est polynomiale puisqu'elle ne prend que le temps de recopier la formule. Si $\exists x_1, x_2, \ldots, x_n | \varphi(x_1, x_2, \ldots, x_n)$ alors, $\exists y_1, y_3, \ldots, y_{2n-1} | \varphi(y_1, y_3, y_5, \ldots, y_{2n-1})$ (on renomme les variables).

Puisque y_2, y_4, \ldots, y_{2n} n'interviennent pas dans cette formule, on a

$$\exists y_1, y_3, \dots, y_{2n-1} | \varphi(y_1, y_3, y_5, \dots, y_{2n-1})
= \forall y_2, y_4, y_{2n} \exists y_1, y_3, \dots, y_{2n-1} | \varphi(y_1, y_3, y_5, \dots, y_{2n-1})
= \exists y_1 \forall y_2 \exists \dots \forall y_{2n} | \varphi(y_1, y_3, y_5, \dots, y_{2n-1})
= \exists y_1 \forall y_2 \exists \dots \forall y_{2n} | \varphi'(y_1, y_2, y_3, \dots, y_{2n-1})$$

Donc $(\varphi', y_1, y_2, \dots, y_m)$ est une instance positive.

Inversement, si $(\varphi', y_1, y_2, \dots, y_m)$ est une instance positive, alors, puisque y_2, y_4, \dots, y_{2n} n'interviennent pas dans φ' , on a toujours

$$\exists y_1 \forall y_2 \exists \dots \forall y_{2n} | \varphi'(y_1, y_2, y_3, \dots, y_{2n-1}) = \exists y_1, y_3, \dots, y_{2n-1} | \varphi(y_1, y_3, y_5, \dots, y_{2n-1})$$

Et donc $\exists x_1, x_2, \dots, x_n | \varphi(x_1, x_2, \dots, x_n)$ donc $(\varphi, x_1, x_2, \dots, x_n)$ est une instance positive.

Donc on a bien conservation de la positivité et la négativité est instances.

Donc il existe une réduction polynomiale de Karp de (SAT?) vers (QBF?)

- 11. Prove that (TAU?) \leq (QBF?).
- 12. Prove that (CONNECTIVITY?) \leq (MSPT).
- 13. Prove that (SUDOKU?) \leq (CHROMA).
- 14. Prove that (INS) \leq (ILP).
- 15. Prove that (BIPARTI?) \leq (2-COL?).
- 16. Prove that $(2\text{-COL}?) \leq (BIPARTI?)$.
- 17. Prove that (SUBSET SUM?) \leq (PARTITION).
- 18. Prove that (SUBSET SUM?) \leq (KNAPSACK).

▶ Correction

(SUBSETSUM?) Soit x_1, x_2, \ldots, x_n et B des entiers, est-ce qu'il existe un sous-ensemble des entiers de x_1, x_2, \ldots, x_n dont la somme fait B? On note alors I les indices de ces entiers. (KNAPSACK) Soit n objets de volume v_1, v_2, \ldots, v_n et de poids p_1, p_2, \ldots, p_n , soit deux entiers V et P, existe-t-il un sous-ensemble $J \subset \llbracket 1; n \rrbracket$ de sorte que $\sum_{i \in J} v_i \leq V$ et $\sum_{i \in J} p_i \geq P$?

La transformation est la suivante, partant d'une instance $(x_1, x_2, \dots, x_n, B)$ de (SUBSETSUM?), on construit une instance $(v_1, v_2, \dots, v_m, p_1 p_2, \dots, p_m, V, P)$ de (KNAPSACK). Pour cela, on pose m = n, $v_i = p_i = x_i$ et V = P = B.

Cette transformation est polynomiale puisqu'elle ne prend que le temps de recopier le entiers 2 fois chacun : $O(\sum \log(x_i) + \log(B))$ ce qui est bien polynomial en la taille de l'instance (elle même égale à $\sum \log(x_i) + \log(B)$).

Si $(x_1, x_2, ..., x_n, B)$ est une instance positive alors il existe $I \subset [1; n]$ tel que $\sum_{i \in I} x_i = B$. Donc $\sum_{i \in I} v_i = V$ et $\sum_{i \in I} p_i = P$. Posons donc J = I et on a bien une réponse positive à l'instance $(v_1, v_2, ..., v_m, p_1 p_2, ..., p_m, V, P)$.

Si $(v_1, v_2, \dots, v_m, p_1 p_2, \dots, p_m, V, P)$ est une instance positive alors il existe $J \subset \llbracket 1; n \rrbracket$ de sorte que $\sum\limits_{i \in J} v_i \leq V$ et $\sum\limits_{i \in J} p_i \geq P$. Donc $\sum\limits_{i \in J} x_i \leq B$ et $\sum\limits_{i \in J} x_i \geq B$. Donc $\sum\limits_{i \in J} x_i = B$. Posons donc I = J et on a bien une réponse positive à l'instance $(x_1, x_2, \dots, x_n, B)$.

Donc on a bien conservation de la positivité et la négativité est instances.

Donc il existe une réduction polynomiale de Karp de (SUBSETSUM?) vers (KNAPSACK).

19. Prove that (SET COVER) \leq (DST).

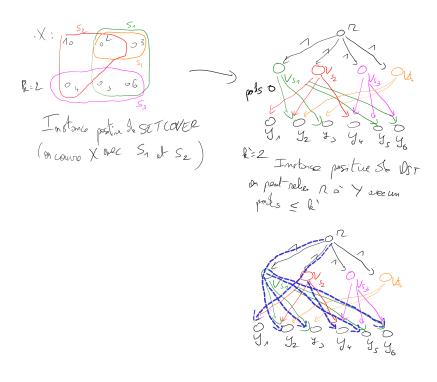
▶ Correction

(SET COVER) Soit un ensemble X, un ensemble S de parties de X (donc chaque élément $s \in S$ est un sous-ensemble de X) et un entier k, existe-t-il un sous-ensemble C de S couvrant X (chaque élément de X est dans au moins un ensemble de C) et de taille inférieure à k? (DST) Soit G un graphe orienté, un nœud r, des poids $\omega : \mathbb{E} \to \mathbb{N}$, un ensemble Y de nœuds de G et un entier k', G possède-t-il un sous-graphe de G possédant un chemin de r vers chaque nœud de Y et possiblement d'autres nœuds dont la somme des poids des arcs est inférieure à k'? (j'ai un peu simplifié la définition par rapport à la correction du TD1, pour éviter des détails inutiles dans la preuve)

La transformation est la suivante, partant d'une instance (X, S, k) de (SET COVER), on construit une instance (G, r, Y, ω, k') de (DST). Le graphe G et les poids ω sont les suivants :

- ajouter un nœud r
- ajouter un nœud v_s par ensemble $s \in S$
- ajouter un nœud y_x par élément $x \in X$.
- relier r à tous les sommets v_s avec un arc (r, v_s) de poids 1
- relier v_s à chaque sommet y_x tel que $x \in s$ avec un arc de poids 0

On pose ensuite $Y = \{y_x, x \in X\}$ et k' = k.



Cette transformation est polynomiale : construire G prend un temps O(1+|S|+|X|+|S|+|S||X|). Construire Y prend un temps O(|X|) et construire k' prend un temps $\log(k)$. La transformation est donc quadratique en la taille de (X, S, k).

Si (X, S, k) est une instance positive alors il existe un sous-ensemble C de S de taille inférieure ou égale à k qui couvre X. Pour chaque élément x de X, il existe un ensemble s_x de C qui contient x. Considérons maintenant le sous-graphe T de G qui contient tous les arcs (r, v_s) pour $s \in C$, ainsi que tous les arcs (v_{s_x}, y_x) pour $x \in X$. Puisque $s_x \in C$, alors (r, v_{s_x}) est dans T, donc il existe un chemin de r vers y_x dan sT. Le poids de T est $|C| \le k = k'$. Donc (G, r, Y, ω, k') est une instance positive de (DST).

Si (G, r, Y, ω, k') est une instance positive de (DST), il existe un sous-graphe T de G possédant un chemin de r vers chaque nœud de Y et possiblement d'autres nœuds dont la somme des poids des arcs est inférieure à k'. Puisque seuls les arcs (r, v_s) sont de poids strictement positifs (égaux à 1), alors T contient au plus k' arcs de la sorte, donc contient au plus k' nœuds de type v_s . Posons $C = \{s|v_s \in T\}$. On a donc $|C| \le k' = k$. Soit $x \in X$, montrons qu'il existe $s \in C$ tel que $c \in s$. On sait que T contient un chemin de r vers y_x . Ce chemin passe nécessirement par un nœud v_s , sous la forme (r, v_s, y_x) . Par construction, cela signifie : que $s \in C$ et $x \in s$. Donc x est bien couvert par x. Donc x0 positive. Donc on a bien conservation de la positivité et la négativité est instances.

Donc il existe une réduction polynomiale de Karp de (SETCOVER) vers (DST).

20. Prove that (SET COVER) \leq (UST).

▶ Correction

Celle-ci est plus complexe. On utilise une réduction très similaire à la précédente mais on travaille dans un graphe non orienté, il faut donc faire attention au fait qu'on a des arêtes qui peuvent aller dans les deux sens et pas seulement des arcs qui ne peuvent aller que de r vers les nœuds de Y.

We know that (SAT) is NP-Complete and (TAU) is Co-NP-Complete. For which of the previous problems can you affirm that they are (Co-)NP-Complete or (Co-)NP-Complete?

▶ Correction

La 4 prouve que (3COL?) est dans NP et la 5 prouve que (COHAM) est dans Co-NP. La 8 et la 9 prouvent que (3SAT?) et (3TAU?) sont respectovivement NP-Difficiles et Co-NP-Difficiles. La 10 e la 11 prouvent que QBF est à la fois NP-Difficile et Co-NP-Difficile.

Exercice 2 — (SUBSET SUM is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit Y un ensemble d'entiers et $s \in \mathbb{N}$, existe-t-il un sous-ensemble Z de Y dont la somme fait s?

We want to prove that (SUBSET SUM) is NP-Complete.

1. Show that this problem is in NP.

▶ Correction

(SUBSET SUM) est résolu par l'algorithme non déterministe suivant : pour chaque entier $y \in Y$, décider de manière non déterministe de mettre y dans Z ou non. Vérifier ensuite si la somme des entiers de Z fait s.

Cet algorithme est polynomial car il y a |Y| choix non déterministe en temps constant suivi d'une somme des entiers de Z en temps $O(\sum_{y \in Z} \log(y))$ et une comparaison en $O(\max(\max_{y \in Y} (\log(y)), \log(s)))$.

Il résout bien l'instance. Si la réponse est OUI, alors il existe un ensemble Z dont la somme fait s. Si l'algorithme fait ses choix non détertministe de sorte à construire cet ensemble, il répondra OUI. Cette instance est donc faiblement acceptée. Dans le cas où la réponse est NON, quel que soit ses choix, la somme des entiers de Z sera différente de s et l'instance est fortement refusée.

- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (SUBSET SUM?) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call Y the set of integers of \mathcal{J} and s the sum we want to reach.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - The numbers of the instance \mathcal{J} have 2n+2m figures (and are then between 0 and 10^{n+m}).
 - For each variable x_i of \mathcal{I} , we add an integer x_i to \mathcal{I} where the *i*-th figure is 1 and where the n+j-th figure is 1 if x_i is in the j-th clause of \mathcal{I} . Every other figure is 0.
 - For each variable x_i of \mathcal{I} , we add an integer $\bar{x_i}$ to \mathcal{J} where the *i*-th figure is 1 and where the n+j-th figure is 1 if $\bar{x_i}$ is in the j-th clause of \mathcal{I} . Every other figure is 0.
 - For each clause C_j of \mathcal{I} , we add two equal numbers r_j and s_j to \mathcal{I} where the n+j-th figure is 1. Every other figure is 0.
 - s is the number where the n first figures are 1 and the m others are 3.
 - (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.

```
On a n=3 et m=4. On a alors les entiers suivants :
```

- $egin{array}{c|c} x_1 & 1000011 \\ \hline x_1 & 1001100 \\ x_2 & 0101100 \\ \hline \end{array}$
- $\begin{array}{c|c} x_2 & 0101100 \\ \bar{x_2} & 0100011 \end{array}$
- x_3 0011000
- $\bar{x_3}$ 0010111
- r_1 0001000
- s_1 0001000
- $r_2 \mid 0000100$
- $s_2 \mid 0000100$
- r_3 | 0000010
- s_3 0000010
- r_4 0000001
- s_4 | 0000001
- s | 1113333
- (b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.

▶ Correction

On a n=2 et m=4. On a alors les entiers suivants :

- $x_1 \mid 101010$
- $\bar{x_1}$ | 100101
- $x_2 \mid 011100$
- $\bar{x_2}$ 010011
- r_1 | 001000
- $s_1 \mid 001000$
- $r_2 \mid 000100$
- $s_2 \mid 000100$
- r_3 | 000010
- s_3 | 000010
- $r_4 \mid 000001$
- $s_4 \mid 000001$
- $s \mid 113333$
- (c) Show that the complexity of the transformation is polynomial.

Pour écrire un entier x en décimal, cela prend un temps $\log_1 0(x)$. Les entiers étant compris entre 0 et 10^{n+m} , la complexité en temps pour écrire les entiers de l'instance est O(n+m). Puisqu'on écrit 2n+2m+1 entiers, la complexité en temps de la transformation est $O((n+m)\cdot(2n+2m+1))$, donc bien polynomiale en la taille de l'instance de 3SAT $(i.e.\ n+m)$.

(d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.

▶ Correction

Si \mathcal{I} est une instance positive, alors il existe une affectation des variables x_1, x_2, \ldots, x_n qui rende les clauses C_1, C_2, \ldots, C_m vraies. Créons un sous-ensemble Z des entiers de \mathcal{J} dont la somme fait s.

Soit a_i l'affectation VRAI ou FAUX de x_i . Si a_i est VRAI alors on ajoute l'entier x_i à Z et sinon on ajoute l'entier $\bar{x_i}$ à Z.

Soit $C_j = (l_1 \vee l_2 \vee l_3)$ une clause. On sait que la clause est vérifiée par l'affectation, donc l_1 ou l_2 ou l_3 est vrai. Si un seul de ces trois littéraux est vrai, on ajoute r_j et s_j à Z. Si deux de ces trois littéraux sont vrais, on ajoute seulement r_j à Z. Et si les trois sont vrais, alors on n'ajoute aucun entier parmi r_j et s_j .

On peut noter que, dans tous les cas, le nombre d'entiers dans Z où le $n+j^e$ chiffre est 1 est exactement 3 : les entiers correspondant aux littéraux vrais et r_j ou s_j s'ils ont été ajoutés. On peut également noter le nombre d'entiers où le i^e chiffre vaut 1, pour $i \leq n$, est égal à 1.

On peut donc voir que, lorsqu'on additionne tous les nombres de Z, il n'y a aucune retenue et le nombre obtenu est $\underbrace{1111\dots11}_{n \text{ fois}}\underbrace{3333\dots333}_{m \text{ fois}}$. Donc l'instance $\mathcal J$ est positive.

- (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a subset $Z \subset Y$ such that the sum of the elements of Z is s.
 - i. Show that $x_i \in Z \Leftrightarrow \bar{x_i} \notin Z$.

▶ Correction

On peut tout d'abord remarquer que, même si on additionnait tous les nombres de Y, alors on n'aurait aucune retenue, quelque soit k, il n'y a jamais plus de 5 nombres dont le $k^{\rm e}$ chiffre est un 1, tous les autres étant 0. Ainsi, pour obtenir un 1 dans le $i^{\rm e}$ chiffre de la somme des entiers de Z, Z doit contenir exactement un nombre dont le $i^{\rm e}$ chiffre est un 1.

Puisque x_i et $\bar{x_i}$ sont les seuls nombres vérifiant cette propriété, $x_i \in Z \Leftrightarrow \bar{x_i} \notin Z$.

ii. Let $C_j = (l_1 \vee l_2 \vee l_3)$ be a clause of \mathcal{I} , show that the integer l_1 or l_2 or l_3 is in X.

▶ Correction

En pour suivant le raisonnement débuté à la question précédente, pour obtenir un 3 dans le $n+j^{\rm e}$ chiffre de la somme des entiers de Z, Z doit contenir exactement trois nombre dont le $n+j^{\rm e}$ chiffre est un 1. Il n'y a que 5 nombres vérifiant cette propriété : $l_1, l_2, l_3, r_j ets_j$. Donc au moins un des entiers l_1, l_2 ou l_3 est dans Z.

iii. Deduce that \mathcal{I} can be satisfied.

▶ Correction

Considérons l'affectation suivante a_i des variables x_i : si l'entier x_i est dans Z alors a_i est VRAI. Sinon a_i est FAUX.

Considérons la clause $C_j = (x_1 \vee x_2 \vee x_3)$. D'après la question précédente, on sait que un des entiers x_1, x_2 ou x_3 est dans Z, donc a_1 ou a_2 ou a_3 est VRAI. Donc C_j est VRAI. Ainsi toutes les clauses sont satisfaites par cette affectation. Donc

 \mathcal{I} est satisfiable. Considérons la clause $C_j = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_3})$. D'après la question précédente, on sait que un des entiers $\bar{x_1}, \bar{x_2}$ ou $\bar{x_3}$ est dans Z, donc d'après les questions précédentes un des entiers x_1 ou x_2 ou x_3 n'est pas dans Z donc a_1 ou a_2 ou a_3 est FAUX. Donc C_j est VRAI.

Le raisonnement est similaire pour les clauses mélangeant littéraux positifs et négatifs. Ainsi toutes les clauses sont satisfaites par cette affectation. Donc \mathcal{I} est satisfiable.

3. Deduce from the previous question that (SUBSET SUM) is NP-Complete.

▶ Correction

D'après les questions précédentes, on sait qu'il existe une réduction polynomiale de Karp de (3SAT?) vers (SUBSET SUM). Puisque (3SAT?) est NP-Complet, alors (SUBSET SUM) est NP-Difficile. Enfin, puisque (SUBSET SUM) est dans NP d'après la question 1, on sait qu'il est NP-Complet.

4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 3 — (SET COVER is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit X un ensemble, S un ensemble de sous-ensembles de X et $K \in \mathbb{N}$, existe-t-il un sous-ensemble C de S de taille inférieure à K couvrant X? (c'est à dire que pour tout $x \in X$, il existe $s \in C$ tel que $x \in s$).

We want to prove that (SET COVER) is NP-Complete.

1. Show that this problem is in NP.

▶ Correction

(SET COVER) est résolu par l'algorithme non déterministe suivant : pour chaque ensemble $s \in S$, décider de manière non déterministe de mettre s dans C ou non. Vérifier ensuite si $|C| \leq K$, pour chaque $x \in X$, s'il existe $s \in C$ tel que $x \in s$.

Cet algorithme est polynomial car il y a |S| choix non déterministe en temps constant suivi d'une comparaison en temps $O(\max(\log(|S|), \log(K)))$. Enfin pour la vérification de la couverture, on parcours C pour tout X. En supposant que l'appartenance de x à s peut se faire en O(1), cette vérification se fait en O(|C||X|) = O(|S||X|) ce qui est polynomial en la taille de l'instance de Set Cover.

Il résout bien l'instance. Si la réponse est OUI, alors il existe un ensemble C de taille inférieure à K couvrant X. Si l'algorithme fait ses choix non déterministe de sorte à construire cet ensemble C, il répondra OUI. Cette instance est donc faiblement acceptée. Dans le cas où la réponse est NON, quel que soit ses choix, l'ensemble C sera de taille supérieure stricte à K ou ne couvrira pas les éléments de X, et donc l'instance sera fortement refusée.

- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (SET COVER) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call X the set of elements of \mathcal{J} , S the set of subsets of X and K the number of sets we can use.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - X will contain n+m elements $e_1, e_2, \ldots, e_{n+m}$ and S with contains 2n sets.
 - For each variable x_i of \mathcal{I} , we add to S a set x_i and a set $\bar{x_i}$ containing e_i .
 - If x_i is in C_j , add e_{n+j} to the set x_i .
 - If $\bar{x_i}$ is in C_j , add e_{n+j} to the set $\bar{x_i}$.
 - -K = n.
 - (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.

On a n=3 et m=4.

On obtient l'instance suivante

On a enfin K=3.

(b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.

▶ Correction

On a n = 2 et m = 4.

On obtient l'instance suivante

On a enfin K=2.

(c) Show that the complexity of the transformation is polynomial.

► Correction

On construit l'ensemble X en O(n+m) et l'ensemble S en $O(2n \cdot |X|) = O(2n \cdot (n+m))$. On construit l'entier K en $O(\log(n))$ donc la transformation est bien polynomiale en n et m, la taille de l'instance de (3SAT?).

(d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.

▶ Correction

Si \mathcal{I} est une instance positive, alors il existe une affectation des variables x_1, x_2, \ldots, x_n qui rende les clauses C_1, C_2, \ldots, C_m vraies. Créons un sous-ensemble C de S de taille inférieure à K couvrant X.

Soit a_i l'affectation VRAI ou FAUX de x_i . Si a_i est VRAI alors on ajoute l'ensemble x_i à C et sinon on ajoute l'ensemble $\bar{x_i}$ à C. On peut voir que l'ensemble C contient exactement n=K ensembles et que les éléments e_i pour $i \leq n$ sont couverts.

Soit $C_j = (l_1 \vee l_2 \vee l_3)$ une clause. On sait que la clause est vérifiée par l'affectation, donc l_1 ou l_2 ou l_3 est vrai. Donc l'ensemble l_1 ou l_2 ou l_3 est dans C. Puisque ces 3 ensembles contiennent l'élément e_{n+j} , tous les éléments de X sont couverts. Donc l'instance $\mathcal J$ est positive.

- (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a subset $C \subset S$ such that each element of X is in at least one set of C and C contains at most K sets.
 - i. Show that $x_i \in C \Leftrightarrow \bar{x_i} \notin C$.

▶ Correction

On sait que, pour tout $i \leq n$, e_i est couvert par C. Puisque seuls x_i et \bar{x}_i couvrent cet élément, alors au moins un des deux est dans C. S'il contient les deux, alors C contiendra en tout au moins n+1 ensembles $(x_i, \bar{x}_i$ et un parmi x_j et \bar{x}_j pour tout $j \neq i$). Puisque C ne peut contenir plus que K = n ensembles, alors il ne peut y avoir qu'un seul ensemble parmi x_i et \bar{x}_i dans C.

Donc C contient exactement un ensemble parmi ces deux là.

ii. Let $C_j=(l_1\vee l_2\vee l_3)$ be a clause of $\mathcal{I},$ show that $l_1\in C$ or $l_2\in C$ or $l_3\in C$.

Puisque seuls les ensembles l_1, l_2 et l_3 couvrent l'élément e_{n+j} et que C couvre X, au moins un de ces 3 là est dans C.

iii. Deduce that \mathcal{I} can be satisfied.

▶ Correction

Considérons l'affectation suivante a_i des variables x_i : si l'ensemble x_i est dans C alors a_i est VRAI. Sinon a_i est FAUX. Considérons la clause $C_j = (x_1 \vee x_2 \vee x_3)$. D'après la question précédente, on sait que un des ensembles x_1, x_2 ou x_3 est dans C, donc a_1 ou a_2 ou a_3 est VRAI. Donc C_j est VRAI. Considérons la clause $C_j = (\bar{x_1} \vee \bar{x_2} \vee \bar{x_3})$. D'après la question précédente, on sait que un des ensembles $\bar{x_1}, \bar{x_2}$ ou $\bar{x_3}$ est dans C, donc d'après les questions précédentes un des ensembles x_1 ou x_2 ou x_3 n'est pas dans C donc a_1 ou a_2 ou a_3 est FAUX. Donc a_2 est VRAI.

Le raisonnement est similaire pour les clauses mélangeant littéraux positifs et négatifs. Ainsi toutes les clauses sont satisfaites par cette affectation. Donc \mathcal{I} est satisfiable.

3. Deduce from the previous question that (SET COVER) is NP-Complete.

▶ Correction

D'après les questions précédentes, on sait qu'il existe une réduction polynomiale de Karp de (3SAT?) vers (SET COVER). Puisque (3SAT?) est NP-Complet, alors (SET COVER) est NP-Difficile. Enfin, puisque (SET COVER) est dans NP d'après la question 1, on sait qu'il est NP-Complet.

4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 4 — (CHROMA is NP-Complete)

On rappelle que (CHROMA) est le problème suivant : soit G=(V,E) un graphe et $K\in\mathbb{N}$, $K\leq |V|$, peut-on colorier V avec K couleurs de sorte que deux nœuds voisins dans G n'aient pas la même couleur.

We want to prove that (CHROMA) is NP-Complete.

1. Show that this problem is in NP.

▶ Correction

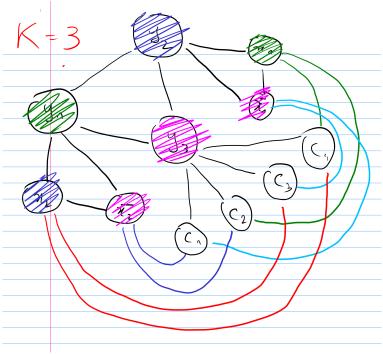
(CHROMA) est résolu par l'algorithme non déterministe suivant : on note c_1, c_2, \ldots, c_K les K couleurs possibles, pour chaque noeud $v \in V$ et chaque couleur c_i , décider de manière non déterministe de colorier v avec c_i . Vérifier ensuite pour toute arête (v, w) si v et w n'ont pas la même couleur..

Cet algorithme est polynomial car il y a $|V|K \leq |V|^2$ choix non déterministe en temps constant et, pour la vérification de la coloration, on parcours E. Donc l'algorithme est en $O(|V|^2 + |E|)$.

Il résout bien l'instance. Si la réponse est OUI, alors il existe une coloration valide de V avec au plus K couleurs. Si l'algorithme fait ses choix non déterministe de sorte à construire cette coloration, il répondra OUI. Cette instance est donc faiblement acceptée. Dans le cas où la réponse est NON, quel que soit ses choix, la coloration ne sera pas valide et l'instance sera fortement refusée.

- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (CHROMA) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call G = (V, E) the graph of \mathcal{J} and K the number of colors we can use.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - G will contain 3n + m + 1 nodes.

- Add to G a clique of n+1 nodes $y_1, y_2, \ldots, y_{n+1}$.
- For each variable x_i of \mathcal{I} , we add to V a node x_i and a node $\bar{x_i}$.
- For each clause C_j of \mathcal{I} , we add a node C_j to V.
- We link x_i to $\bar{x_i}$.
- If $i \neq j$ and j < n+1, we link x_i to y_j and $barx_i$ to y_j .
- We link y_{n+1} to C_j for every j.
- If x_i is not in C_j , link x_i and C_j .
- If $\bar{x_i}$ is not in C_j , link $\bar{x_i}$ and C_j .
- -K = n + 1.
- (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.
- (b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.



On peut voir ci-dessus

qu'il n'est pas possible de colorier le grpahe avec 3 couleurs.

(c) Show that the complexity of the transformation is polynomial.

► Correction

Le graphe G possède 3n + m + 1 nœuds et est donc construit en $O((3n + m + 1)^2)$. On construit l'entier K en $O(\log(n + 1))$ donc la transformation est bien polynomiale en n et m, la taille de l'instance de (SET COVER).

(d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.

▶ Correction

Si \mathcal{I} est une instance positive, alors il existe une affectation des variables x_1, x_2, \ldots, x_n qui rende les clauses C_1, C_2, \ldots, C_m vraie. Créons un sous-ensemble C de S de taille inférieure à K couvrant X.

Soit a_i l'affectation VRAI ou FAUX de x_i . Construisons une coloration du graphe valide avec K = n + 1 couleurs. On va appeler les couleurs $c_1 c_2 ... c_{n+1}$. On attribue la couleur c_i à y_i (pas de conflits dans la clique des y_i).

Si a_i est VRAI, on colorie x_i avec la couleur c_i et $\bar{x_i}$ avec c_{n+1} . Sinon a_i est FAUX, on colorie x_i avec la couleur c_{n+1} et $\bar{x_i}$ avec c_i . (Pas de conflit car x_i et $\bar{x_i}$ ne sont pas reliés à y_i et y_{n+1})

Soit C_j une clause. Supposons sans perte de généralité que $C_j = (x_1 \lor x_2 \lor x_3)$. On sait que cette clause est vraie donc a_1 est VRAI ou a_2 est VRAI ou a_3 est VRAI.

Prenons la couleur du noeud x_i pour lequel a_i est VRAI. Puisque a_i est VRAI, on sait que x_i est colorié avec c_i donc on colorie le noeud C_j avec la couleur c_i . Sans perte de généralité on suppose que x_1 est VRAI. Donc C_j est colorié avec c_1 . Or le noeud C_j est relié à tous les x_i qui ne sont pas dans la clause et tous les $\bar{x_i}$ qui ne sont pas dans la clause. Donc à $\bar{x_1}$, $\bar{x_2}$, $\bar{x_3}$, x_4 et $\bar{x_4}$, x_5 et $\bar{x_5}$.

 $\bar{x_1}$ est colorié avec la couleur c_{n+1} car a_1 est VRAI. Les autres noeuds x_i et $\bar{x_i}$ sont coloriés avec les couleurs c_i et c_{n+1} donc pas avec la couleur c_1 . (On peut généraliser ce résultat à toutes les clauses quelque soit leurs littéraux)

Donc il est possible de colorier le graphe avec K couleurs. Donc l'instance $\mathcal J$ est positive.

- (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a coloration of G with at most K colors. Let c_v be the color of the node v.
 - i. Show that $c_{x_i} = c_{y_i}$ and $c_{\bar{x_i}} = c_{y_{n+1}}$ or $c_{x_i} = c_{y_{n+1}}$ and $c_{\bar{x_i}} = c_{y_i}$.

▶ Correction

On sait que x_i est relié à tous les y_j avec $j \neq i$ et j < n+1. Donc x_i ne peut pas être de la même couleur que ces noeuds.

Or il n'y a que K couleurs et il existe K noeuds y_j . Donc les seules couleurs possibles de x_i sont c_{y_i} et $c_{y_{n+1}}$. Pareil pour \bar{x}_i .

Puisque x_i et $\bar{x_i}$ sont reliés, il n'ont pas la même couleur donc l'un des deux est colorié avec c_{y_i} et l'autre avec $c_{y_{n+1}}$.

ii. Let $C_j = (l_1 \vee l_2 \vee l_3)$ be a clause of \mathcal{I} , show that $c_{C_j} = c_{l_1}$ or $c_{C_j} = c_{l_2}$ or $c_{C_j} = c_{l_3}$.

► Correction

 C_j est relié à tous les autres noeuds que l_1, l_2 et l_3 . Et à y_{n+1} . Donc C_j ne peut pas avoir la couleur $c_{y_{n+1}}$ ni les couleurs c_{x_i} avec $x_i \neq l_1, l_2, l_3$ ni les couleurs $c_{\bar{x_i}}$ avec $\bar{x_i} \neq l_1, l_2, l_3$.

Donc C_i ne peut être colorié qu'avec les couleurs de l_1 , l_2 ou l_3 .

iii. Deduce that \mathcal{I} can be satisfied.

► Correction

Soit l'affectation des variables suivantes :

si x_i est colorié avec c_{y_i} alors x_i est VRAI (dans ce cas $\bar{x_i}$ est colorié avec $c_{y_{n+1}}$ sinon x_i est FAUX (et il est colorié avec $c_{y_{n+1}}$) Montrons que cette affection satisfait la formule, donc chaque clause.

Soit une clause $C_j=(x_1\vee x_2\vee x_3)$ (sans perte de généralité). Montrons que x_1 ou x_2 ou x_3 est VRAI. C'est à dire montrons que x_1 est colorié avec c_{y_1} ou x_2 est colorié avec c_{y_2} ou x_3 est colorié avec c_{y_3}

D'après la question ii) on sait que C_j est colorié avec c_{x_1} ou c_{x_2} ou c_{x_3} . on sait aussi que C_j n'est pas colorié avec $c_{y_{n+1}}$.

Or si ni x_1 ni x_2 ni x_3 ne sont VRAI alors ils sont tous coloriés avec $c_{y_{n+1}}$. Il y aurait contradiction donc l'une des 3 variables est vraie.

Donc la formule est satisfiable.

3. Deduce from the previous question that (CHROMA) is NP-Complete.

D'après les questions précédentes, on sait qu'il existe une réduction polynomiale de Karp de (3SAT?) vers (CHROMA). Puisque (3SAT?) est NP-Complet, alors (CHROMA) est NP-Difficile. Enfin, puisque (CHROMA) est dans NP d'après la question 1, on sait qu'il est NP-Complet.

4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 5 — Some proof

1. Show that the reduction relation is transitive.

▶ Correction

Supposons que $\Pi_1 \preceq \Pi_2$ et $\Pi_2 \preceq \Pi_3$. Montrons que $\Pi_1 \preceq \Pi_3$.

On sait qu'il existe un algorithme \mathcal{A} qui transforme les instances x_1 de Π_1 en instance x_2 de Π_2 en temps polynomial de sorte que x_1 est positive si et seulement si x_2 est positive.

On sait qu'il existe un algorithme \mathcal{B} qui transforme les instances x_2 de Π_2 en instance x_3 de Π_3 en temps polynomial de sorte que x_2 est positive si et seulement si x_3 est positive.

Considérons l'algorithme $\mathcal{C} = \mathcal{B} \circ \mathcal{A}$. Cet algorithme transforme les instances x_1 de Π_1 en instance x_3 de Π_3 . L'instance $\mathcal{A}(x_1)$ de Π_2 est positive si et seulement si l'instance x_1 est positive. De plus l'instance $x_3 = \mathcal{B}(\mathcal{A}(x_1))$ de Π_3 est positive si et seulement si l'instance $\mathcal{A}(x_1)$ est positive. Donc x_3 est positive si et seulement si x_1 est positive.

 \mathcal{A} étant polynomial, il existe une constante c telle que, pour toute instance x_1 de Π_1 , le temps de calcul de \mathcal{A} ne dépasse pas $|x_1|^c$ opérations. Puisque, pour écrire chaque bit de x_2 , il faut une opération, on sait que x_2 ne peut avoir une taille plus grande que $|x_1|^c$. Puisque \mathcal{B} est polynomial, il existe une constante d telle que, pour toute instance x_2 de Π_2 , le temps de calcul de \mathcal{B} ne dépasse pas $|x_2|^d$ opérations. Donc le temps de calcul de \mathcal{C} ne dépasse pas $(|x_1|^c)^d$ ce qui est polynomial en la taille de x_1 .

Donc il existe bien une réduction polynomiale de Karp de Π_1 vers Π_3 .

2. If we assume that there exists a problem $\Pi = (\mathcal{L}, \mathcal{L}_Y, \mathcal{L}_N)$ such that Π and $\Pi^c = (\mathcal{L}, \mathcal{L}_N, \mathcal{L}_Y)$ are NP-Complete, then show that NP = Co-NP.

► Correction

Soit un problème de Π_2 de NP. Puisque Π^c est NP-Complet, $\Pi_2 \preceq \Pi^c$. Or, puisque Π^c est dans Co-NP, alors tout problème plus facile que Π^c au sens de la réduction polynomiale de Karp est dans Co-NP. Donc Π_2 est dans Co-NP. Donc NP \subset Co-NP.

Soit un problème de Π_2 de Co-NP, alors Π_2^c est dans NP. Puisque Π^c est NP-Complet, $\Pi_2^c \preceq \Pi^c$. Or, puisque Π^c est dans Co-NP, alors tout problème plus facile que Π^c au sens de la réduction polynomiale de Karp est dans Co-NP. Donc Π_2^c est dans Co-NP. Donc Π_2 est dans NP. Donc Co-NP \subset NP.

3. An oracle for Π is defined as a machine that solve in constant time the problem Π . What would happen if we have an oracle for (3-SAT?)?

▶ Correction

On aurait P = NP. En effet, on pourrait résoudre 3SAT en temps constant, donc tout autre problème de NP en temps polynomial (pas en temps constant, il faut le temps de transformer ce problème en 3SAT).

Exercice 6 — $Turing \ reduction$

1. Show that the polynomial reduction of Karp is a special case of polynomial Turing reduction.

On rappelle que la réduction polynomiale de Turing s'écrit ainsi : $\Pi_1 \preccurlyeq_T \Pi_2$ si, en disposant d'un algorithme \mathcal{A} pour résoudre Π_2 en temps constant, on peut construire un algorithme polynomial pour résoudre Π_1 .

Supposons qu'il existe une réduction polynomiale de Karp entre Π_1 et Π_2 , alors on a un algorithme \mathcal{B} qui transforme les instances de Π_1 en instance de Π_2 en temps polynomiale et qui conserve la positivité des instances. Si on dispose d'un algorithme \mathcal{A} qui résout Π_2 en temps constant, alors l'algorithme $\mathcal{A} \circ \mathcal{B}$ résout Π_1 en temps polynomial.

2. Show that, for every problem Π in NP, there exists a problem of Co-NP such that there exists a polynomial Turing reduction from that problem to Π , and conversely.

▶ Correction

Considérons le problème complémentaire Π^c de Π (on inverse les réponses OUI et NON). Si on dispose d'un algorithme \mathcal{A} qui résout Π^c en temps constant, alors l'algorithme qui, connaissant une instance \mathcal{I} de Π , applique $\mathcal{A}(\mathcal{I})$ et renvoie la réponse inverse résout Π . Donc $\Pi \preccurlyeq_T \Pi^c$. De même $\Pi^c \preccurlyeq_T \Pi$ puisque la technique est symétrique.

3. Deduce that NP and Co-NP are equivalent if we use the polynomial Turing reduction.

▶ Correction

Supposons qu'on a un problème Π NP-Complet. Alors pour tout problème Π_2 de Co-NP, puisqu'on a $\Pi_2^c \in \text{NP}$, alors $\Pi_2^c \preccurlyeq \Pi$. Donc $\Pi_2^c \preccurlyeq_T \Pi$. Et puis que $\Pi_2 \preccurlyeq_T \Pi_2^c$. Alors $\Pi_2 \preccurlyeq_T \Pi$. Donc Π est Co-NP Difficile au sens de la réduction de Turing.

De même tous les problèmes Co-NP Complets sont NP-Difficile au sens de la réduction de Turing. Donc NP est, au sens de la réduction de Turing, plus difficile et plus facile que Co-NP.

4. Show that, if $NP \neq Co-NP$, then there does not exist any Co-NP problem which is NP-hard and conversely if we use the polynomial Karp reduction.

▶ Correction

Cf l'exercice précédent.