Tutorial 3 : Reduction and completeness

Computational complexity theory, 5th semester.

2017-2018

Exercice 1 — Simple reductions
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SIZE) < (INS).

SIZE) < (CHROMA).

INS) < (W-INS).

3-COL?) < (SAT).

COHAM) < (TAU).

HAM?) < (LOP).

HAM?) < (TSP).

SAT?) < (3-SAT?).

TAU?) < (3-TAU?).

SAT?) < (QBF?).

TAU?) < (QBF?).
CONNECTIVITY ?7) < (MSPT).
SUDOKU ?) < (CHROMA).

INS) < (ILP).

BIPARTI?) < (2-COL?).

2.COL?) < (BIPARTI?).

SUBSET SUM?) < (PARTITION).
SUBSET SUM?) < (KNAPSACK).
. Prove that (SET COVER) < (DST).

20. Prove that (SET COVER) < (UST).

We know that (SAT) is NP-Complete and (TAU) is Co-NP-Complete. For which of the previous
problems can you affirm that they are (Co-)NP-Complete or (Co-)NP-Complete ?

Exercice 2 — (SUBSET SUM is NP-Complete)
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On rappelle que (SUBSET SUM) est le probléme suivant : soit ¥ un ensemble d’entiers et
s € N, existe-t-il un sous-ensemble Z de Y dont la somme fait s?

We want to prove that (SUBSET SUM) is NP-Complete.

1. Show that this problem is in NP.

2. Let 7 be an instance of (3-SAT ?), we want to transform Z into an instance Z of (SUBSET
SUM ?) in polynomial time such that Z is positive if and only if J is positive. We call Y the
set of integers of J and s the sum we want to reach.

— We assume that Z has n variables x1, ..., z, and m clauses Cy,Cs, ..., Cpy,.
— The numbers of the instance J have 2n + 2m figures (and are then between 0 and
10mtm).

— For each variable x; of Z, we add an integer xz; to J where the i-th figure is 1 and where
the n 4 j-th figure is 1 if x; is in the j-th clause of Z. Every other figure is 0.



— For each variable x; of Z, we add an integer ; to J where the i-th figure is 1 and where
the n + j-th figure is 1 if #; is in the j-th clause of Z. Every other figure is 0.

— For each clause C; of Z, we add two equal numbers r; and s; to J where the n 4 j-th
figure is 1. Every other figure is 0.

— s is the number where the n first figures are 1 and the m others are 3.

(a) Describe J if T = (@1 Vaa Vas) A (1 Vo Vaz) Az Vi Vas) Az Vig V).
(b) Describe J if 7 = (331 V xz) N (fl V .IQ) A\ (331 \Y fg) A (fl V fg).

) Show that the complexity of the transformation is polynomial.

)

Using the two examples, show that, if Z is a positive instance, then J is a positive
instance.

(e) We assume that J is positive, we want to prove that Z is positive too. There exists a
subset Z C Y such that the sum of the elements of Z is s.

i. Show that z; € Z & ©; & Z.
ii. Let C; = (I1 V12 VI3) be a clause of Z, show that the integer [; or Iy or I3 is in X.
iii. Deduce that Z can be satisfied.

3. Deduce from the previous question that (SUBSET SUM) is NP-Complete.
4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-
Hard ?

Exercice 3 — (SET COVER is NP-Complete)

On rappelle que (SUBSET SUM) est le probléme suivant : soit X un ensemble, S un ensemble
de sous-ensembles de X et K € N, existe-t-il un sous-ensemble C' de S de taille inférieure a K
couvrant X 7 (c’est a dire que pour tout z € X il existe s € C' tel que x € s).

We want to prove that (SET COVER) is NP-Complete.

1. Show that this problem is in NP.

2. Let Z be an instance of (3-SAT ?), we want to transform Z into an instance Z of (SET
COVER) in polynomial time such that Z is positive if and only if J is positive. We call X
the set of elements of 7, S the set of subsets of X and K the number of sets we can use.

— We assume that Z has n variables x1,...,x, and m clauses C1,Cs,...,Cy,.
— X will contain n + m elements e, ea, ..., €n4m and S with contains 2n sets.
— For each variable z; of Z, we add to S a set x; and a set x; containing e;.
— If z; is in C}, add e,+; to the set x;.

— If ; is in C}, add e, 4; to the set z;.

— K =n.

Using the two examples, show that, if Z is a positive instance, then J is a positive
instance.
(e) We assume that J is positive, we want to prove that Z is positive too. There exists a
subset C' C S such that each element of X is in at least one set of C' and C' contains at
most K sets.

i. Show that z; € C & x; ¢ C.

ii. Let C; = (I1 V2 VI3) be a clause of Z, show that [; e Corly € Corlz3 € C .

iii. Deduce that Z can be satisfied.

3. Deduce from the previous question that (SET COVER) is NP-Complete.

4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-
Hard ?



Exercice 4 — (CHROMA is NP-Complete)

On rappelle que (CHROMA) est le probléme suivant : soit G = (V, E) un graphe et K € N,
K < |V|, peut-on colorier V avec K couleurs de sorte que deux noeuds voisins dans G n’aient pas

la méme couleur.
We want to prove that (CHROMA) is NP-Complete.

1.
2.

Show that this problem is in NP.
Let Z be an instance of (3-SAT ?), we want to transform 7 into an instance Z of (CHROMA)
in polynomial time such that Z is positive if and only if 7 is positive. We call G = (V, E)
the graph of 7 and K the number of colors we can use.

— We assume that Z has n variables x1,...,x, and m clauses C1,Cs,...,Cy,.

— G will contain 3n + m + 1 nodes.

— Add to G a clique of n + 1 nodes y1,¥2, -, Yn+1-

— For each variable x; of Z, we add to V a node z; and a node ;.

— For each clause C; of Z, we add a node C; to V.

— We link z; to z;.

— Ifi# j and j <n+1, we link z; to y; and barz; to y;.

— We link yp41 to C; for every j.

— If ; is not in CY, link z; and Cj.

— If #; is not in C}, link #; and Cj.

— K=n+1.

) Describe J if T = (1 Vaa Vas) A (@1 Vaa Vi) A(x Vae Vas) Az Vas Vas).

) Describe J if T = (21 V @2) A (1 V 22) A (21 V Z2) A (21 V T2).
(¢) Show that the complexity of the transformation is polynomial.

)

Using the two examples, show that, if Z is a positive instance, then J is a positive
instance.

(e) We assume that J is positive, we want to prove that Z is positive too. There exists a
coloration of G with at most K colors. Let ¢, be the color of the node v.

i. Show that c;;, = ¢, and ¢z, = ¢y, ,, O ¢p; = ¢y, ., and ¢z, = ¢y,
ii. Let C; = (I1VI2VI3) be a clause of Z, show that cc;, = ¢, or co; = ¢, or cc, = c;.
ili. Deduce that Z can be satisfied.

3. Deduce from the previous question that (CHROMA) is NP-Complete.
4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-

Hard?

Exercice 5 — Some proof

1. Show that the reduction relation is transitive.

If we assume that there exists a problem II = (£, Ly, L) such thatIl and 11¢ = (£, Ly, Ly)
are NP-Complete, then show that NP = Co-NP.

An oracle for II is defined as a machine that solve in constant time the problem II. What
would happen if we have an oracle for (3-SAT ?)?

Exercice 6 — Turing reduction

Show that the polynomial reduction of Karp is a special case of polynomial Turing reduction.

Show that, for every problem II in NP, there exists a problem of Co-NP such that there exists
a polynomial Turing reduction from that problem to II, and conversely.

Deduce that NP and Co-NP are equivalent if we use the polynomial Turing reduction.

Show that, if NP # Co-NP, then there does not exist any Co-NP problem which is NP-hard
and conversely if we use the polynomial Karp reduction.



