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Exercice 1 — Simple reductions

1. Prove that (SIZE) ≼ (INS).
2. Prove that (SIZE) ≼ (CHROMA).
3. Prove that (INS) ≼ (W-INS).
4. Prove that (3-COL ?) ≼ (SAT).
5. Prove that (COHAM) ≼ (TAU).
6. Prove that (HAM ?) ≼ (LOP).
7. Prove that (HAM ?) ≼ (TSP).
8. Prove that (SAT?) ≼ (3-SAT?).
9. Prove that (TAU?) ≼ (3-TAU ?).

10. Prove that (SAT?) ≼ (QBF ?).
11. Prove that (TAU?) ≼ (QBF ?).
12. Prove that (CONNECTIVITY ?) ≼ (MSPT).
13. Prove that (SUDOKU ?) ≼ (CHROMA).
14. Prove that (INS) ≼ (ILP).
15. Prove that (BIPARTI ?) ≼ (2-COL ?).
16. Prove that (2-COL?) ≼ (BIPARTI ?).
17. Prove that (SUBSET SUM ?) ≼ (PARTITION).
18. Prove that (SUBSET SUM ?) ≼ (KNAPSACK).
19. Prove that (SET COVER) ≼ (DST).
20. Prove that (SET COVER) ≼ (UST).

We know that (SAT) is NP-Complete and (TAU) is Co-NP-Complete. For which of the previous
problems can you affirm that they are (Co-)NP-Complete or (Co-)NP-Complete ?

Exercice 2 — (SUBSET SUM is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit Y un ensemble d’entiers et
s ∈ N, existe-t-il un sous-ensemble Z de Y dont la somme fait s ?

We want to prove that (SUBSET SUM) is NP-Complete.
1. Show that this problem is in NP.
2. Let I be an instance of (3-SAT?), we want to transform I into an instance I of (SUBSET

SUM ?) in polynomial time such that I is positive if and only if J is positive. We call Y the
set of integers of J and s the sum we want to reach.

— We assume that I has n variables x1, . . . , xn and m clauses C1, C2, . . . , Cm.
— The numbers of the instance J have 2n + 2m figures (and are then between 0 and

10n+m).
— For each variable xi of I, we add an integer xi to J where the i-th figure is 1 and where

the n+ j-th figure is 1 if xi is in the j-th clause of I. Every other figure is 0.
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— For each variable xi of I, we add an integer x̄i to J where the i-th figure is 1 and where
the n+ j-th figure is 1 if x̄i is in the j-th clause of I. Every other figure is 0.

— For each clause Cj of I, we add two equal numbers rj and sj to J where the n+ j-th
figure is 1. Every other figure is 0.

— s is the number where the n first figures are 1 and the m others are 3.

(a) Describe J if I = (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3).
(b) Describe J if I = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2).
(c) Show that the complexity of the transformation is polynomial.
(d) Using the two examples, show that, if I is a positive instance, then J is a positive

instance.
(e) We assume that J is positive, we want to prove that I is positive too. There exists a

subset Z ⊂ Y such that the sum of the elements of Z is s.
i. Show that xi ∈ Z ⇔ x̄i ̸∈ Z.
ii. Let Cj = (l1 ∨ l2 ∨ l3) be a clause of I, show that the integer l1 or l2 or l3 is in X.
iii. Deduce that I can be satisfied.

3. Deduce from the previous question that (SUBSET SUM) is NP-Complete.
4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-

Hard ?

Exercice 3 — (SET COVER is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit X un ensemble, S un ensemble
de sous-ensembles de X et K ∈ N, existe-t-il un sous-ensemble C de S de taille inférieure à K
couvrant X ? (c’est à dire que pour tout x ∈ X, il existe s ∈ C tel que x ∈ s).

We want to prove that (SET COVER) is NP-Complete.
1. Show that this problem is in NP.
2. Let I be an instance of (3-SAT ?), we want to transform I into an instance I of (SET

COVER) in polynomial time such that I is positive if and only if J is positive. We call X
the set of elements of J , S the set of subsets of X and K the number of sets we can use.

— We assume that I has n variables x1, . . . , xn and m clauses C1, C2, . . . , Cm.
— X will contain n+m elements e1, e2, . . . , en+m and S with contains 2n sets.
— For each variable xi of I, we add to S a set xi and a set x̄i containing ei.
— If xi is in Cj , add en+j to the set xi.
— If x̄i is in Cj , add en+j to the set x̄i.
— K = n.

(a) Describe J if I = (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3).
(b) Describe J if I = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2).
(c) Show that the complexity of the transformation is polynomial.
(d) Using the two examples, show that, if I is a positive instance, then J is a positive

instance.
(e) We assume that J is positive, we want to prove that I is positive too. There exists a

subset C ⊂ S such that each element of X is in at least one set of C and C contains at
most K sets.

i. Show that xi ∈ C ⇔ x̄i ̸∈ C.
ii. Let Cj = (l1 ∨ l2 ∨ l3) be a clause of I, show that l1 ∈ C or l2 ∈ C or l3 ∈ C .
iii. Deduce that I can be satisfied.

3. Deduce from the previous question that (SET COVER) is NP-Complete.
4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-

Hard ?
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Exercice 4 — (CHROMA is NP-Complete)

On rappelle que (CHROMA) est le problème suivant : soit G = (V,E) un graphe et K ∈ N,
K ≤ |V |, peut-on colorier V avec K couleurs de sorte que deux nœuds voisins dans G n’aient pas
la même couleur.

We want to prove that (CHROMA) is NP-Complete.
1. Show that this problem is in NP.
2. Let I be an instance of (3-SAT?), we want to transform I into an instance I of (CHROMA)

in polynomial time such that I is positive if and only if J is positive. We call G = (V,E)
the graph of J and K the number of colors we can use.

— We assume that I has n variables x1, . . . , xn and m clauses C1, C2, . . . , Cm.
— G will contain 3n+m+ 1 nodes.
— Add to G a clique of n+ 1 nodes y1, y2, . . . , yn+1.
— For each variable xi of I, we add to V a node xi and a node x̄i.
— For each clause Cj of I, we add a node Cj to V .
— We link xi to x̄i.
— If i ̸= j and j < n+ 1, we link xi to yj and barxi to yj .
— We link yn+1 to Cj for every j.
— If xi is not in Cj , link xi and Cj .
— If x̄i is not in Cj , link x̄i and Cj .
— K = n+ 1.

(a) Describe J if I = (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x̄3).
(b) Describe J if I = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2).
(c) Show that the complexity of the transformation is polynomial.
(d) Using the two examples, show that, if I is a positive instance, then J is a positive

instance.
(e) We assume that J is positive, we want to prove that I is positive too. There exists a

coloration of G with at most K colors. Let cv be the color of the node v.
i. Show that cxi = cyi and cx̄i = cyn+1 or cxi = cyn+1 and cx̄i = cyi .
ii. Let Cj = (l1∨ l2∨ l3) be a clause of I, show that cCj = cl1 or cCj = cl2 or cCj = cl3 .
iii. Deduce that I can be satisfied.

3. Deduce from the previous question that (CHROMA) is NP-Complete.
4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-

Hard ?

Exercice 5 — Some proof

1. Show that the reduction relation is transitive.
2. If we assume that there exists a problem Π = (L,LY ,LN ) such thatΠ and Πc = (L,LN ,LY )

are NP-Complete, then show that NP = Co-NP.
3. An oracle for Π is defined as a machine that solve in constant time the problem Π. What

would happen if we have an oracle for (3-SAT?) ?

Exercice 6 — Turing reduction

1. Show that the polynomial reduction of Karp is a special case of polynomial Turing reduction.
2. Show that, for every problem Π in NP, there exists a problem of Co-NP such that there exists

a polynomial Turing reduction from that problem to Π, and conversely.
3. Deduce that NP and Co-NP are equivalent if we use the polynomial Turing reduction.
4. Show that, if NP ̸= Co-NP, then there does not exist any Co-NP problem which is NP-hard

and conversely if we use the polynomial Karp reduction.
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