Tutorial 3: Reduction and completeness

Computational complexity theory, 5th semester.

2017-2018

Exercice 1 — Simple reductions

- 1. Prove that (SIZE) \leq (INS).
- 2. Prove that (SIZE) \leq (CHROMA).
- 3. Prove that (INS) \leq (W-INS).
- 4. Prove that $(3-COL?) \leq (SAT)$.
- 5. Prove that (COHAM) \leq (TAU).
- 6. Prove that (HAM?) \leq (LOP).
- 7. Prove that (HAM?) \leq (TSP).
- 8. Prove that (SAT?) \leq (3-SAT?).
- 9. Prove that $(TAU?) \leq (3-TAU?)$.
- 10. Prove that (SAT?) \leq (QBF?).
- 11. Prove that $(TAU?) \leq (QBF?)$.
- 12. Prove that (CONNECTIVITY?) \leq (MSPT).
- 13. Prove that (SUDOKU?) \leq (CHROMA).
- 14. Prove that (INS) \leq (ILP).
- 15. Prove that (BIPARTI?) \leq (2-COL?).
- 16. Prove that $(2\text{-COL}?) \leq (BIPARTI?)$.
- 17. Prove that (SUBSET SUM?) \leq (PARTITION).
- 18. Prove that (SUBSET SUM?) \leq (KNAPSACK).
- 19. Prove that (SET COVER) \leq (DST).
- 20. Prove that (SET COVER) \leq (UST).

We know that (SAT) is NP-Complete and (TAU) is Co-NP-Complete. For which of the previous problems can you affirm that they are (Co-)NP-Complete or (Co-)NP-Complete?

Exercice 2 — (SUBSET SUM is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit Y un ensemble d'entiers et $s \in \mathbb{N}$, existe-t-il un sous-ensemble Z de Y dont la somme fait s?

We want to prove that (SUBSET SUM) is NP-Complete.

- 1. Show that this problem is in NP.
- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (SUBSET SUM?) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call Y the set of integers of \mathcal{J} and s the sum we want to reach.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - The numbers of the instance \mathcal{J} have 2n + 2m figures (and are then between 0 and 10^{n+m}).
 - For each variable x_i of \mathcal{I} , we add an integer x_i to \mathcal{I} where the *i*-th figure is 1 and where the n+j-th figure is 1 if x_i is in the j-th clause of \mathcal{I} . Every other figure is 0.

- For each variable x_i of \mathcal{I} , we add an integer $\bar{x_i}$ to \mathcal{J} where the *i*-th figure is 1 and where the n+j-th figure is 1 if $\bar{x_i}$ is in the j-th clause of \mathcal{I} . Every other figure is 0.
- For each clause C_j of \mathcal{I} , we add two equal numbers r_j and s_j to \mathcal{I} where the n+j-th figure is 1. Every other figure is 0.
- s is the number where the n first figures are 1 and the m others are 3.
- (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.
- (b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.
- (c) Show that the complexity of the transformation is polynomial.
- (d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.
- (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a subset $Z \subset Y$ such that the sum of the elements of Z is s.
 - i. Show that $x_i \in Z \Leftrightarrow \bar{x_i} \notin Z$.
 - ii. Let $C_j = (l_1 \vee l_2 \vee l_3)$ be a clause of \mathcal{I} , show that the integer l_1 or l_2 or l_3 is in X.
 - iii. Deduce that \mathcal{I} can be satisfied.
- 3. Deduce from the previous question that (SUBSET SUM) is NP-Complete.
- 4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 3 — (SET COVER is NP-Complete)

On rappelle que (SUBSET SUM) est le problème suivant : soit X un ensemble, S un ensemble de sous-ensembles de X et $K \in \mathbb{N}$, existe-t-il un sous-ensemble C de S de taille inférieure à K couvrant X? (c'est à dire que pour tout $x \in X$, il existe $s \in C$ tel que $x \in s$).

We want to prove that (SET COVER) is NP-Complete.

- 1. Show that this problem is in NP.
- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (SET COVER) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call X the set of elements of \mathcal{J} , S the set of subsets of X and K the number of sets we can use.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - X will contain n+m elements $e_1, e_2, \ldots, e_{n+m}$ and S with contains 2n sets.
 - For each variable x_i of \mathcal{I} , we add to S a set x_i and a set $\bar{x_i}$ containing e_i .
 - If x_i is in C_j , add e_{n+j} to the set x_i .
 - If $\bar{x_i}$ is in C_j , add e_{n+j} to the set $\bar{x_i}$.
 - -K = n.
 - (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.
 - (b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.
 - (c) Show that the complexity of the transformation is polynomial.
 - (d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.
 - (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a subset $C \subset S$ such that each element of X is in at least one set of C and C contains at most K sets.
 - i. Show that $x_i \in C \Leftrightarrow \bar{x_i} \notin C$.
 - ii. Let $C_j = (l_1 \vee l_2 \vee l_3)$ be a clause of \mathcal{I} , show that $l_1 \in C$ or $l_2 \in C$ or $l_3 \in C$.
 - iii. Deduce that \mathcal{I} can be satisfied.
- 3. Deduce from the previous question that (SET COVER) is NP-Complete.
- 4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 4 — (CHROMA is NP-Complete)

On rappelle que (CHROMA) est le problème suivant : soit G=(V,E) un graphe et $K \in \mathbb{N}$, $K \leq |V|$, peut-on colorier V avec K couleurs de sorte que deux nœuds voisins dans G n'aient pas la même couleur.

We want to prove that (CHROMA) is NP-Complete.

- 1. Show that this problem is in NP.
- 2. Let \mathcal{I} be an instance of (3-SAT?), we want to transform \mathcal{I} into an instance \mathcal{I} of (CHROMA) in polynomial time such that \mathcal{I} is positive if and only if \mathcal{J} is positive. We call G = (V, E) the graph of \mathcal{J} and K the number of colors we can use.
 - We assume that \mathcal{I} has n variables x_1, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .
 - G will contain 3n + m + 1 nodes.
 - Add to G a clique of n+1 nodes $y_1, y_2, \ldots, y_{n+1}$.
 - For each variable x_i of \mathcal{I} , we add to V a node x_i and a node $\bar{x_i}$.
 - For each clause C_j of \mathcal{I} , we add a node C_j to V.
 - We link x_i to $\bar{x_i}$.
 - If $i \neq j$ and j < n+1, we link x_i to y_j and $barx_i$ to y_j .
 - We link y_{n+1} to C_j for every j.
 - If x_i is not in C_j , link x_i and C_j .
 - If $\bar{x_i}$ is not in C_i , link $\bar{x_i}$ and C_i .
 - -K = n + 1.
 - (a) Describe \mathcal{J} if $\mathcal{I} = (\bar{x_1} \vee x_2 \vee x_3) \wedge (\bar{x_1} \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3})$.
 - (b) Describe \mathcal{J} if $\mathcal{I} = (x_1 \vee x_2) \wedge (\bar{x_1} \vee x_2) \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_2})$.
 - (c) Show that the complexity of the transformation is polynomial.
 - (d) Using the two examples, show that, if \mathcal{I} is a positive instance, then \mathcal{J} is a positive instance.
 - (e) We assume that \mathcal{J} is positive, we want to prove that \mathcal{I} is positive too. There exists a coloration of G with at most K colors. Let c_v be the color of the node v.
 - i. Show that $c_{x_i} = c_{y_i}$ and $c_{\bar{x_i}} = c_{y_{n+1}}$ or $c_{x_i} = c_{y_{n+1}}$ and $c_{\bar{x_i}} = c_{y_i}$.
 - ii. Let $C_j = (l_1 \vee l_2 \vee l_3)$ be a clause of \mathcal{I} , show that $c_{C_j} = c_{l_1}$ or $c_{C_j} = c_{l_2}$ or $c_{C_j} = c_{l_3}$.
 - iii. Deduce that \mathcal{I} can be satisfied.
- 3. Deduce from the previous question that (CHROMA) is NP-Complete.
- 4. For which of the problems of Exercise 1 can you affirm that they are NP-Complete or NP-Hard?

Exercice 5 — Some proof

- 1. Show that the reduction relation is transitive.
- 2. If we assume that there exists a problem $\Pi = (\mathcal{L}, \mathcal{L}_Y, \mathcal{L}_N)$ such that Π and $\Pi^c = (\mathcal{L}, \mathcal{L}_N, \mathcal{L}_Y)$ are NP-Complete, then show that NP = Co-NP.
- 3. An oracle for Π is defined as a machine that solve in constant time the problem Π . What would happen if we have an oracle for (3-SAT?)?

Exercice 6 — $Turing\ reduction$

- 1. Show that the polynomial reduction of Karp is a special case of polynomial Turing reduction.
- 2. Show that, for every problem Π in NP, there exists a problem of Co-NP such that there exists a polynomial Turing reduction from that problem to Π , and conversely.
- 3. Deduce that NP and Co-NP are equivalent if we use the polynomial Turing reduction.
- 4. Show that, if $NP \neq Co-NP$, then there does not exist any Co-NP problem which is NP-hard and conversely if we use the polynomial Karp reduction.