Tutorial 2: Transitive closure

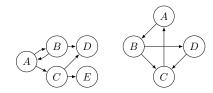
Graph theory, 1st semester.

2022

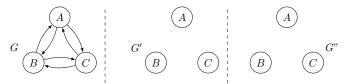
Exercise 1 — Some examples and properties

Two graphs G and G' are τ -equivalent if $\tau(G) = \tau(G')$. A partial graph G' of G is τ -minimal τ -équivalent to G if it is τ -equivalent to G and, if we remove an arc of G', we get a graph that is not τ -equivalent to G. A graph G' is τ -minimum τ -équivalent to G if it is τ -minimal τ -équivalent to G and minimizes the number of arcs.

1. Draw the transitive closure of the following graphs:



2. Add some arcs to G' and G'' such that G' and G'' are τ -minimal τ -equivalent to G and G'' contains strictly less arcs than G'.



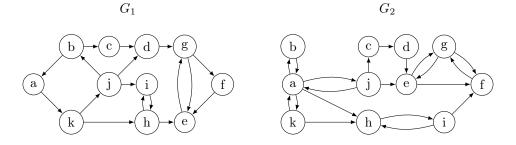
- 3. Show that G is strongly connected if and only if the circuit $(x_1, x_2, ..., x_n)$ is τ -equivalent to G, where the x_i s are the nodes of G.
- 4. Show that the previous property is false if we replace τ -equivalent by τ -minimal τ -equivalent.
- 5. Show that an elementary circuit is τ -minimum τ -equivalent to itself.
- 6. Show that a graph G is hamiltonian if and only if, every graph τ -minimum τ -equivalent to G is an hamiltonian circuit of G.

Exercise 2 — τ equivalent graph of a acyclic digraph

Let G be a directed acyclic graph. Show that there exists a unique graph G' that is τ -equivalent to G and that minimize the number of arcs. Show that G' is a partial graph of G.

Exercise 3 — τ -equivalent graphs and reduced graphs

Let G_1 and G_2 be the two following graphs:



- 1. Compute the transitive closures of G_1 and G_2 .
- 2. Compute the reduced graphs G_{1R} and G_{2R} of G_1 and G_2 .
- 3. Compute the transitive closures of G_{1R} and G_{2R} .
- 4. Show that two graphs are τ -equivalent if and only if their reduced graphs are τ -equivalent.

Exercise 4 — Compute the transitive closure of a graph

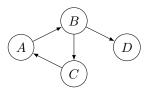
- 1. Describe with pseudo code an algorithm computing the transitive closure of a graph using the classical algorithms enumerating the nodes of a graph. What is its complexity?
- 2. (a) Let A be the adjacency matrix of a graph G. What is A^p ?
 - (b) Let B be the adjacency matrix of a graph G with 1 on the diagonal cells. What is B^p ?
 - (c) Describe in pseudocode an algorithm computing the transitive closure of a graph using the powers of either the matrix A or the matrix B. What is its complexity?
- 3. The Roy Wharshall algorithm is the following :

Require: A directed graph G = (U, A)**Ensure:** The transitive closure of G

 $\begin{aligned} \mathbf{for} \ w \in U \ \mathbf{do} \\ \mathbf{for} \ u \in U \ \mathbf{do} \\ \mathbf{for} \ v \in U \ \mathbf{do} \end{aligned}$

if $(u, w) \in A$ and $(w, v) \in A$ then Add (u, v) to A.

(a) Run the algorithm on the following graph:



- (b) What is its complexity?
- (c) Describe the algorithm using only the adjacency matrix of G.
- (d) Run the algorithm on the following matrix.

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Exercise 5 — Equipment of a workshop

Nine machines, a, b, \ldots, h and i, are installed in a workshop. Mechanical parts are produced by successive machines (drills, polishers, welds, ...). We want to build conveyor belts at minimum cost in order to move the pieces from a machine to another. The following array gives, for each machine M, which machines may be used in a next step to build a product. We must link M to each of those machines by a succession of belts. Model this problem with a graph problem and solve it.

a	b, c, d, e, f, g, h, i
b	a, c, d, e, f, g, h, i
c	d, e
d	e
e	d
f	d, e, g, h, i
g	d, e, f, h, i
h	d, e, f, g, i
i	d, e, f, g, h