Tutorial 6: Cycles and cocycles basis

Graph theory, 1st semester.

2022

Exercise 1 — Search basis

- 1. (a) Give the vectors associated with the cycles (bcfb) and (abfeda).
 - (b) Show that the cycle (bcfb) can be seen as the linear combination of two other cycles.
 - (c) What is the size of a cycles basis of G?
 - (d) Give a cycle basis of G that does not contain either (bcfb) or (abfeda).
 - (e) Give the linear combination of the vectors of the previous basis that equals (abfeda).
- 2. (a) Give the vectors associated with (abf) and (ae).
 - (b) Show that the cocycle (ae) can be seen as the linear combination of two other cocycles.
 - (c) What is the size of a cocycle basis of G?
 - (d) Give a cocycle basis of G that does not contain any cocycle with one only node.
 - (e) Give the linear combination of the vectors of the previous basis that equals (abf).

Exercise 2 — Orthogonalité des cycles et des cocycles

1. Let G be the following graph, give the cycle vectors $\mu(abcfeda)$ and $\mu(bdefb)$ and the cocycle vectors $\nu(ac)$ and $\nu(bdef)$. Check that each of the two first vectors is orthogonal to the two last.

- 2. Let G = (V, E) be a graph, v be a node of V and c be a cycle that does not contain v. Show that $\nu(v) \perp \mu(c)$.
- 3. Let G = (V, E) be a graph, v be a node of V and c be a cycle that contains v. Show that $\nu(v) \perp \mu(c)$.
- 4. Let G=(V,E) be a graph with p connected components and v_i be a node of the i-th component of G. Show that $B=(\nu(u),u\in V\setminus\{v_1,v_2,\ldots,v_p\})$ is a cocycle basis of G.
- 5. Deduce that, in a graphe G, every cocycle of G is orthogonal to every cycle of G.