Tutorial 9 : Spanning trees

Graph theory, 1st semester.

2022

Exercise 1 — Spanning tree and cycle basis

Let G be the following graph :

1. Build a spanning tree T of G such that the associated cycle basis is the set of finite faces of G.

Exercise 2 — $Build\ a\ telecommunication\ network$

A bank wants to build a telecommunication network linking its main agency, situated at the center of Paris, at *Bourse*, and seven of its secondary agencies. The cost needed to connect two agencies is given in the following array:

	В	О	Е	R	SL	L	N
Bourse							
Opera	5						
Etoile	18	17					
République	9	11	27				
St-Lazare	13	7	23	20			
Louvre	7	12	15	15	15		
Neuilly	38	38	20	40	40	35	
Chatelet	22	15	25	25	30	10	45

Model this problem with a graph optimization problem and solve it.

Exercise 3 — Some tree properties

- 1. Show that any tree with two nodes has at least two pendant nodes (with degree 1).
- 2. Show that any connected graph has two non-articulation nodes.
- 3. Give a graph with only two non-articulation nodes.

Exercise 4 — Connectivity of the spanning trees graph

Let G = (V, E) be a undirected graph and \mathcal{T} be the set of spanning trees of G. Let $H = (\mathcal{T}, E_H)$ be the graph where

- the nodes are spanning trees of G
- An edge links two nodes of H corresponding to spanning trees T_1 and T_2 of G if and only if all the edges of T_1 and T_2 are the same except for one.
- 1. Draw H when G is the following graph:

2. Show that H is connected.

Exercise 5 — Prim algorithm

The Prim algorithm finds a minimum spanning tree.

Require: An undirected graph G = (V, E) with weights $\omega : E \to \mathbb{R}^+$.

Ensure: A minimum spanning tree of G

 $T = (V_T, E_T) = (\emptyset, \emptyset)$

Add an arbitrary node v to V_T

while $|V_T| \neq |V|$ do

Add to E_T an edge of minimum weight linking $u \in V_T$ to a node $v \in V \setminus V_T$

Add v to V_T

 $\mathbf{return}\ T$

1. Apply the algorithm to the following graph :

- 2. Let T_i be the tree T at the beginning of iteration i and e be the edge chosen during that iteration. Let \mathcal{T}_i be the set of spanning trees of G covering T_i . Show that there exists a minimum cost tree of \mathcal{T}_i containing e.
- 3. Deduce that the Prim algorithm is optimal.