Chapter 1 : Dynamic programming ENSIIE - Operations Research Module

Dimitri Watel (dimitri.watel@ensiie.fr)

2022

Principle

Definition

Dynamic programming is a method for solving problems, it is not an algorithm but a way to build an algorithm.

Warning

The important part of the course is the method, **not the examples.** The problems on which we will apply the dynamic programming method in the course or in the tutorials are not the same as the ones you will have to solve during the exams. In this course there will be 3 examples:

- The Fibonacci sequence
- The subset sum problem
- The shortest path problem (in a special case)

Find a recursive function

First step

Dynamic programming is a way to program a recurrence relation. In order to solve a problem with the dynamic programming method, the first step consists in finding that relation.

Fibonacci sequence

Problem definition

Given an integer n, compute f(n) defined by f(n) = f(n-1) + f(n-2) if n > 1 and by f(0) = 0 and f(1) = 1.

The recurrence relation is given by the problem itself.

Fibonacci sequence : naïve version

```
\begin{aligned} & \text{function } f(i) \\ & \text{if } i \leq 1 \text{ then} \\ & & \text{return } i \\ & & \text{return } f(i-1) + f(i-2) \end{aligned}
```

Subset sum problem

$$P = \{1, 1, 1, 5, 7, 8, 8, 9, 17\}$$

Is there a subset of P of size 40?

$$\exists ?P' \subset P|\sum_{p \in P'} p = 40$$

Subset sum problem

$$P = \{1, 1, 1, 5, 7, 8, 8, 9, 17\}$$

Is there a subset of P of size 40?

$$\exists ?P' \subset P|\sum_{p \in P'} p = 40$$

$$P = \{1, 1, 1, 5, 7, 8, 8, 9, 17\}$$

Let $P = \{p_1, p_2, \dots, p_9\}$ and B = 40. The problem becomes:

Subset sum

$$\exists ?P' \subset \{p_1, p_2, \ldots, p_9\} \big| \sum_{p \in P'} p = B.$$

More general version

Let $i \leq 9$ and $b \leq B$, compute

$$f(i,b) = \exists ?P' \subset \{p_1,p_2,\ldots,p_i\} | \sum_{p \in P'} p = b.$$

MRO Chap 01 Dyn Prog

If we assume $\exists P' \subset \{p_1, p_2, \dots, p_i\} | \sum_{p \in P'} p = b$. In that case:

• either $p_i \in P'$ and then

$$\exists P'' \subset \{p_1, p_2, \dots, p_{i-1}\} | \sum_{p \in P''} p = b - p_i$$

ullet or $p_i
ot\in P'$ and then $\exists P'' \subset \{p_1,p_2,\ldots,p_{i-1}\}|\sum\limits_{p\in P''} p=b$

$$f(i,b) = f(i-1,b-p_i) \vee f(i-1,b)$$

To be more exact:

$$f(i, b \ge 0) = f(i - 1, b - p_i) \lor f(i - 1, b)$$

 $f(i, b < 0) = \bot$
 $f(0, b \ne 0) = \top$

Subset sum: naïve version

```
function f(i,b)

if b < 0 then

return \bot

if i = 0 then

return (b = 0)

return f(i - 1, b - p_i) \lor f(i - 1, b)
```

What is the shortest path from S to M?

What is the shortest path from S to M?

Let d(v) be the weight of a shortest path from v to M. We want d(S). We write $\omega(u, v)$ the weight of the arc (u, v).

More general version

Let v be a node of G, compute d(v).

Let u^* be the successor of v in a shortest path P from v to M, then $d(v) = d(u^*) + \omega(v, u^*)$. If u is another successor of v, then $d(u) + \omega(v, u) \ge d(u^*) + \omega(v, u^*)$.

$$d(v) = \min_{u \in \Gamma^{+}(v)} (d(u) + \omega(v, u))$$
$$d(M) = 0$$

Remark: it works because the graph has no circuit!

Shortest path: naive version

```
function d(v)

if v = M then

return 0

return \min_{u \in \Gamma^+(v)} (d(u) + \omega(v, u))
```

Intractability

None of those recurrence relations should be computed naïvely: some calculations are done multiple times.

Fibonacci

$$f(n) = f(n-1) + f(n-2) = f(n-2) + f(n-3) + f(n-3) + f(n-4) = \dots$$

Subsetsum

Si
$$p_{i-1} = p_i = 1$$
, $f(i, B) = f(i-1, B-1) \lor f(i-1, B) = f(i-2, B-2) \lor f(i-2, B-1) \lor f(i-2, B)$

Shortest Path

If the arcs
$$(u, v)$$
, (u, w) and (v, w) exist.

$$d(u) = \min(d(v) + \omega(u, v), \mathbf{d(w)} + \omega(u, w), \dots) = \min(\min(\mathbf{d(w)} + \omega(v, w), \dots) + \omega(u, v), \min(\dots) + \omega(u, w), \dots)$$

Dynamique programming: memoization version

Definition

The memoization dynamic programming technique consists in storing the results of each recursive call so that, when the call is done a second time, the computation is not done twice.

Fibonacci sequence: Memoization

Let $T: \mathbb{N} \to \mathbb{N}$ be an array where every cell is initially empty.

```
\begin{aligned} & \text{function } f(i) \\ & \text{if } i \leq 1 \text{ then} \\ & \text{return } i \\ & \text{return} \\ & f(i-1) + f(i-2) \end{aligned}
```

```
\begin{aligned} & \textbf{function} \ f_{Memo}(i) \\ & \textbf{if} \ \ T(i) \ \text{is empty then} \\ & \textbf{if} \ \ i \leq 1 \ \textbf{then} \\ & \textbf{return} \ \ i \\ & T(i) \leftarrow f_{Memo}(i-1) + f_{Memo}(i-2) \\ & \textbf{return} \ \ T(i) \end{aligned}
```

Subset sum

Let $T: \mathbb{N}^2 \to \{\top, \bot\}$ be an array where every cell is initially empty.

```
function f(i,b)

if b < 0 then

return \bot

if i = 0 then

return (b = 0)

return

f(i-1,b-p_i) \lor f(i-1,b)
```

```
function f_{Memo}(i,b)

if T(i,b) is empty then

if b < 0 then

return \bot

if i = 0 then

return (b = 0)

T(i,b) \leftarrow

f_{Memo}(i-1,b-p_i) \lor f_{Memo}(i-1,b)

return T(i,b)
```

Shortest path

Let $T: V \to \mathbb{N}$ be an array where every cell is initially empty.

function
$$d(v)$$
 if $V = M$ then if $V = M$ then $V = M$ if $V = M$

$$\begin{array}{l} \text{function } d_{Memo}(v) \\ \text{if } T(v) \text{ is empty then} \\ \text{if } v = M \text{ then} \\ \text{return } 0 \\ T(v) \leftarrow \\ \min_{u \in \Gamma^+(v)} \left(d_{Memo}(u) + \omega(v,u) \right) \end{array}$$

return
$$T(v)$$

Generalization

Dynamic programming: memoization version

In order to compute a recursive function $f: X \to Y$,

- create an array $T: X \to Y$
- \bullet Before doing any calculation, check if the result is not already in ${\cal T}$
- Store every result in T before returning it.

Dynamic programming: iterative version

Definition

The iterative dynamic programming technique consists in solving first the terminal subproblems, and then in solving every subproblems by going back through the recursive calls until the problem is solved. Every intermediate result is stored.

Fibonacci sequence: Iterative version

- List of all subproblems : Compute $f(i), \forall i \leq n$
- Recursive calls : $f(i) \rightarrow f(i-1), f(i-2)$
- Terminal cases : f(0), f(1)

$$\Rightarrow$$
 Compute $f(i-1)$ before $f(i)$

$$\Rightarrow$$
 Compute $f(i)$ for i from 0 to n

Fibonacci sequence : Iterative version

Let $T : [0, n] \to \mathbb{N}$ be an array where every cell is initially empty.

$$\begin{aligned} & \text{function } f(i) \\ & \text{if } i \leq 1 \text{ then} \\ & \text{return } i \\ & \text{return} \\ & f(i-1) + f(i-2) \end{aligned}$$

function
$$f_{Iter}(n)$$

 $T(0) \leftarrow 0$
 $T(1) \leftarrow 1$
for i from 2 to n do
 $T(i) \leftarrow T(i-1) + T(i-2)$
return $T(n)$

Subset sum: Iterative version

- List of all subproblems : Compute $f(i, b), \forall i \leq n, b \leq B$
- Recursive calls : $f(i,b) \rightarrow f(i-1,b-p_i), f(i-1,b)$
- Terminal cases : $f(0,b), \forall b$
 - \Rightarrow Compute $f(i-1,b), \forall b \leq B$, before $f(i,b), \forall b \leq B$
 - \Rightarrow Compute f(i, b) for i from 0 to n, for b from 0 to B

Subset sum: Iterative version

```
Let T : [0; n] \times [0; B] \to \{\top, \bot\} be an array where every cell is initially empty.
```

```
function f_{lter}(n, B)
                                     for b from 0 to B do
function f(i, b)
                                         T(0,b) \leftarrow (b=0)
   if b < 0 then
                                     for i from 1 to n do
       return 丄
                                         for b from 0 to B do
   if i = 0 then
                                            if b \geq p_i then
       return (b=0)
                                                T(i,b) \leftarrow T(i-1,b-p_i) \vee T(i-1,b)
    return
                                            else
f(i-1, b-p_i) \vee f(i-1, b)
                                                 T(i,b) \leftarrow T(i-1,b)
                                     return T(n, B)
```


Shortest path: Iterative version

List of all subproblems

Compute
$$d(v), \forall v$$

Recursive calls

$$d(v) \rightarrow d(u), \forall u \in \Gamma^+(v)$$

Terminal cases

$$\Rightarrow$$
 Compute $d(u), \forall u \in \Gamma^+(v)$, before $d(v)$

 \Rightarrow Compute d(u) in reversed topological order.

Shortest path: Iterative version

Let $T: V \to \mathbb{N}$ be an array where every cell is initially empty.

```
 \begin{aligned} & \text{function } d(v) \\ & \text{if } v = M \text{ then} \\ & \text{return } 0 \\ & \text{return} \\ & \underset{u \in \Gamma^+(v)}{\min} (d(u) + \omega(v, u)) \end{aligned} \qquad \begin{aligned} & T(M) = 0 \\ & L \leftarrow \text{Reversed topological ordering of } G \backslash M \\ & \text{for } v \in L \text{ do} \\ & T(v) \leftarrow \min_{u \in \Gamma^+(v)} (T(u) + \omega(v, u)) \end{aligned}  & \text{return } T(S)
```

Generalization

Dynamic programming: iterative version

In order to compute a recursive function $f: X \to Y$,

- list all the subproblems of f(x)
- list all the recursive calls of f
- list all the terminal cases of f
- ullet Compute the terminal cases and store the results in an array T
- ullet Go back through the recursive calls until the initial problem is solve and store every intermediate result in T

Complexity: Fibonacci Memoization

```
1: function f_{Memo}(i)

2: if T(i) is empty then

3: if i \le 1 then

4: return i

5: T(i) \leftarrow f_{Memo}(i-1) + f_{Memo}(i-2)

6: return T(i)
```

- Lines 3 to 5 are done at most once per $i \le n$
- \Rightarrow At most 2n recursive calls to f_{Memo} , twice per $i \le n$.
- \Rightarrow At most n calls with lines 3 to 5 in time O(1), and at most n calls without, in time O(1) too.
- \Rightarrow Complexity : O(n+n) = O(n)

Complexity: Subset sum

```
1: function f_{Memo}(i, b)

2: if T(i, b) is empty then

3: if b < 0 then

4: return \bot

5: if i = 0 then

6: return (b = 0)

7: T(i, b) \leftarrow f_{Memo}(i - 1, b - p_i) \lor f_{Memo}(i - 1, b)

8: return T(i, b)
```

- Lines 3 to 7 are done at most once per $i \le n, b \le B$
- \Rightarrow At most 2nB recursive calls to f_{Memo} , twice per $i \le n, b \le B$.
- \Rightarrow At most nB calls with lines 3 to 7 in time O(1), and at most nB calls without, in time O(1) too.
- \Rightarrow Complexity : O(nB + nB) = O(nB)

Complexity: Subset sum

```
On rappelle que G = (V, E), on note n = |V| et m = |E|.

1: function d_{Memo}(v)

2: if T(v) is empty then

3: if v = M then

4: return 0

5: T(v) \leftarrow \min_{u \in \Gamma^{+}(v)} (d_{Memo}(u) + \omega(v, u))
```

- 6: **return** T(v)
 - Lines 3 to 5 are done at most once per node $v \in V$
 - \Rightarrow At most $m = \sum_{v \in V} deg(v)$ recursive calls to d_{Memo} , deg(v) per $v \in V$.
 - ⇒ At most n calls with lines 3 to 5 in time O(deg(v)), and at most m n calls without, in time O(1) too.

$$\Rightarrow$$
 Complexity : $O(\sum_{v \in V} deg(v) + m - n) = O(2m - n) = O(m)$

Iterative version

The two versions (usually) have the same complexity: on the worst case, the array T is fully filled.

Warning: special cases may occurs.

Sometimes it does not work.

Recursive combinatorial explosion

We want to transform a binary number into another using transformation rules. Each rule transform a number into a **bigger** number.

For example:

•
$$0 \xrightarrow{(1)} 10$$

•
$$1 \xrightarrow{(2)} 01$$

•
$$101 \xrightarrow{(3)} 01001$$

$$010 \xrightarrow{(4)} 0111$$

We can now transform numbers

$$\underline{0} \xrightarrow{(1)} \underline{10} \xrightarrow{(2)} \underline{010} \xrightarrow{(4)} \underline{0111} \xrightarrow{(2)} \underline{0101} \underline{1} \xrightarrow{(3)} \dots$$

Question: we are given two binary numbers x and y and a set \mathcal{T} of m transformation rules, it is possible to transform x into y with the rules of \mathcal{T} ?

Recursive combinatorial explosion

There is a dynamic programming algorithm to solve the problem.

```
function f(x, y)
    if |x| > |y| then
        return FALSE
    else if x = y then
        return TRUE
    if T(x, y) is empty then
        T(x, y) \leftarrow \mathsf{FALSE}
        for all rule t \in \mathcal{T} do
            for all way to apply t to x do
                T(x,y) \leftarrow T(x,y) \vee f(t(x),y)
    return T(x, y)
```

Recursive combinatorial explosion

But we need to store too many information $(2^{|y|-|x|})$ cells in T).

Wrong recursion

Latin square problems

Input

An empty grid with $n \times n$ cells

Output

n cells such that

- exactly one cell per line and column
- maximize the minimum distance between two chosen cells.

Wrong recursion

Latin square problems

Input

An empty grid with $n \times n$ cells

Output

n cells such that

- exactly one cell per line and column
- maximize the minimum distance between two chosen cells.

Wrong recursion

No obvious way to generate a recursive function.

In the syllabus, to be seen in tutorials

- How to find the solution in addition to the value of the solution? (for instance, how to find a shortest path in addition to the cost of the shortest path?; how to find the subset instead of only proving it exists, ...)
- The Roy-Floyd-Warshall algorithm: find all the pair of shortest paths in a graph.