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Principle

Definition
Dynamic programming is a method for solving problems, it is not
an algorithm but a way to build an algorithm.
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Warning

The important part of the course is the method, not the
examples. The problems on which we will apply the dynamic
programming method in the course or in the tutorials are not the
same as the ones you will have to solve during the exams.
In this course there will be 3 examples:

The Fibonacci sequence
The subset sum problem
The shortest path problem (in a special case)
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Find a recursive function

First step
Dynamic programming is a way to program a recurrence relation.
In order to solve a problem with the dynamic programming method,
the first step consists in finding that relation.
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Fibonacci sequence

Problem definition
Given an integer n, compute f (n) defined by
f (n) = f (n− 1) + f (n− 2) if n > 1 and by f (0) = 0 and f (1) = 1.

The recurrence relation is given by the problem itself.
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Fibonacci sequence : naïve version

function f (i)
if i ≤ 1 then

return i
return f (i − 1) + f (i − 2)
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Subset sum problem

P = {1, 1, 1, 5, 7, 8, 8, 9, 17}

Is there a subset of P of size 40?

∃?P ′ ⊂ P|
∑
p∈P′

p = 40
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Recurrence relation

P = {1, 1, 1, 5, 7, 8, 8, 9, 17}

Let P = {p1, p2, . . . , p9} and B = 40. The problem becomes:

Subset sum
∃?P ′ ⊂ {p1, p2, . . . , p9}|

∑
p∈P′

p = B .

More general version
Let i ≤ 9 and b ≤ B , compute
f (i , b) = ∃?P ′ ⊂ {p1, p2, . . . , pi}|

∑
p∈P′

p = b.
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Recurrence relation

If we assume ∃P ′ ⊂ {p1, p2, . . . , pi}|
∑
p∈P′

p = b. In that case:

either pi ∈ P ′ and then
∃P” ⊂ {p1, p2, . . . , pi−1}|

∑
p∈P”

p = b − pi

or pi ̸∈ P ′ and then ∃P” ⊂ {p1, p2, . . . , pi−1}|
∑

p∈P”

p = b

f (i , b) = f (i − 1, b − pi ) ∨ f (i − 1, b)
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Recurrence relation

To be more exact:

f (i , b ≥ 0) = f (i − 1, b − pi ) ∨ f (i − 1, b)
f (i , b < 0) = ⊥
f (0, b ̸= 0) = ⊥

f (0, 0) = ⊤

10
Dimitri Watel MRO Chap 01 Dyn Prog



Generalization
Find a recurrence relation

Memoization
Iterative version

Complity of the dynamic programming algorithms
When does it not work?

Tutorials...

Subset sum : naïve version

function f (i , b)
if b < 0 then

return ⊥
if i = 0 then

return (b = 0)
return f (i − 1, b − pi ) ∨ f (i − 1, b)

11
Dimitri Watel MRO Chap 01 Dyn Prog



Generalization
Find a recurrence relation

Memoization
Iterative version

Complity of the dynamic programming algorithms
When does it not work?

Tutorials...

What is the shortest path from S to M?

S E R G M
20 15
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Recurrence relation

Let d(v) be the weight of a shortest path from v to M. We want
d(S). We write ω(u, v) the weight of the arc (u, v).

More general version

Let v be a node of G , compute d(v).
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Recurrent relation

Let u∗ be the successor of v in a shortest path P from v to M,
then d(v) = d(u∗) + ω(v , u∗). If u is another successor of v , then
d(u) + ω(v , u) ≥ d(u∗) + ω(v , u∗).

d(v) = min
u∈Γ+(v)

(d(u) + ω(v , u))

d(M) = 0

Remark : it works because the graph has no circuit!
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Shortest path : naive version

function d(v)
if v = M then

return 0
return min

u∈Γ+(v)
(d(u) + ω(v , u))
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Intractability
None of those recurrence relations should be computed naïvely:
some calculations are done multiple times.

Fibonacci
f (n) = f (n−1)+f(n - 2) = f(n - 2)+f(n - 3)+f(n - 3)+f (n−4) = . . .

Subsetsum
Si pi−1 = pi = 1, f (i ,B) = f (i − 1,B − 1) ∨ f (i − 1,B) =
f (i − 2,B − 2) ∨ f(i - 2, B - 1) ∨ f(i - 2, B - 1) ∨ f (i − 2,B)

Shortest Path
If the arcs (u, v), (u,w) and (v ,w) exist.
d(u) = min(d(v) + ω(u, v),d(w) + ω(u,w), . . . ) =
min(min(d(w) + ω(v ,w), . . . ) + ω(u, v),min(. . . ) + ω(u,w), . . . )
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Dynamique programming : memoization version

Definition
The memoization dynamic programming technique consists in
storing the results of each recursive call so that, when the call is
done a second time, the computation is not done twice.
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Fibonacci sequence : Memoization

Let T : N→ N be an array where every cell is initially empty.

function f (i)
if i ≤ 1 then

return i
return

f (i − 1) + f (i − 2)

function fMemo(i)
if T (i) is empty then

if i ≤ 1 then
return i

T (i)← fMemo(i − 1) + fMemo(i − 2)
return T (i)

18
Dimitri Watel MRO Chap 01 Dyn Prog



Generalization
Find a recurrence relation

Memoization
Iterative version

Complity of the dynamic programming algorithms
When does it not work?

Tutorials...

Subset sum

Let T : N2 → {⊤,⊥} be an array where every cell is initially empty.

function f (i , b)
if b < 0 then

return ⊥
if i = 0 then

return (b = 0)
return

f (i−1, b−pi )∨f (i−1, b)

function fMemo(i , b)
if T (i , b) is empty then

if b < 0 then
return ⊥

if i = 0 then
return (b = 0)

T (i , b)←
fMemo(i − 1, b − pi ) ∨ fMemo(i − 1, b)

return T (i , b)
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Shortest path

Let T : V → N be an array where every cell is initially empty.

function d(v)
if v = M then

return 0
return

min
u∈Γ+(v)

(d(u) + ω(v , u))

function dMemo(v)
if T (v) is empty then

if v = M then
return 0

T (v)←
min

u∈Γ+(v)
(dMemo(u) + ω(v , u))

return T (v)
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Generalization

Dynamic programming : memoization version
In order to compute a recursive function f : X → Y ,

create an array T : X → Y

Before doing any calculation, check if the result is not already
in T

Store every result in T before returning it.
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Dynamic programming : iterative version

Definition
The iterative dynamic programming technique consists in solving
first the terminal subproblems, and then in solving every
subproblems by going back through the recursive calls until the
problem is solved. Every intermediate result is stored.
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Fibonacci sequence : Iterative version

List of all subproblems : Compute f (i),∀i ≤ n

Recursive calls : f (i)→ f (i − 1), f (i − 2)
Terminal cases : f (0), f (1)

⇒ Compute f (i − 1) before f (i)

⇒ Compute f (i) for i from 0 to n
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Fibonacci sequence : Iterative version

Let T : J0, nK→ N be an array where every cell is initially empty.

function f (i)
if i ≤ 1 then

return i
return

f (i − 1) + f (i − 2)

function fIter (n)
T (0)← 0
T (1)← 1
for i from 2 to n do

T (i)← T (i − 1) + T (i − 2)
return T (n)
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Subset sum : Iterative version

List of all subproblems : Compute f (i , b), ∀i ≤ n, b ≤ B

Recursive calls : f (i , b)→ f (i − 1, b − pi ), f (i − 1, b)
Terminal cases : f (0, b),∀b

⇒ Compute f (i − 1, b), ∀b ≤ B, before f (i , b),∀b ≤ B

⇒ Compute f (i , b) for i from 0 to n, for b from 0 to B
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Subset sum : Iterative version

Let T : J0; nK× J0;BK→ {⊤,⊥} be an array where every cell is
initially empty.

function f (i , b)
if b < 0 then

return ⊥
if i = 0 then

return (b = 0)
return

f (i−1, b−pi )∨f (i−1, b)

function fIter (n,B)
for b from 0 to B do

T (0, b)← (b = 0)
for i from 1 to n do

for b from 0 to B do
if b ≥ pi then

T (i , b)← T (i − 1, b− pi )∨T (i − 1, b)

else
T (i , b)← T (i − 1, b)

return T (n,B)
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Shortest path : Iterative version

List of all subproblems

Compute d(v), ∀v

Recursive calls

d(v)→ d(u),∀u ∈ Γ+(v)

Terminal cases
d(M)

⇒ Compute d(u),∀u ∈ Γ+(v), before d(v)

⇒ Compute d(u) in reversed topological order.
28

Dimitri Watel MRO Chap 01 Dyn Prog



Generalization
Find a recurrence relation

Memoization
Iterative version

Complity of the dynamic programming algorithms
When does it not work?

Tutorials...

Shortest path : Iterative version

Let T : V → N be an array where every cell is initially empty.

function d(v)
if v = M then

return 0
return

min
u∈Γ+(v)

(d(u) + ω(v , u))

function dIter (S)
T (M) = 0
L← Reversed topological ordering of G\M
for v ∈ L do

T (v)← min
u∈Γ+(v)

(T (u) + ω(v , u))

return T (S)
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Generalization

Dynamic programming : iterative version
In order to compute a recursive function f : X → Y ,

list all the subproblems of f (x)
list all the recursive calls of f
list all the terminal cases of f
Compute the terminal cases and store the results in an array T

Go back through the recursive calls until the initial problem is
solve and store every intermediate result in T
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Complexity : Fibonacci Memoization

1: function fMemo(i)
2: if T (i) is empty then
3: if i ≤ 1 then
4: return i
5: T (i)← fMemo(i − 1) + fMemo(i − 2)
6: return T (i)

Lines 3 to 5 are done at most once per i ≤ n

⇒ At most 2n recursive calls to fMemo , twice per i ≤ n.
⇒ At most n calls with lines 3 to 5 in time O(1), and at most
n calls without, in time O(1) too.

⇒ Complexity : O(n + n) = O(n)
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Complexity : Subset sum
1: function fMemo(i , b)
2: if T (i , b) is empty then
3: if b < 0 then
4: return ⊥
5: if i = 0 then
6: return (b = 0)
7: T (i , b)← fMemo(i − 1, b − pi ) ∨ fMemo(i − 1, b)
8: return T (i , b)

Lines 3 to 7 are done at most once per i ≤ n, b ≤ B

⇒ At most 2nB recursive calls to fMemo , twice per i ≤ n, b ≤ B.

⇒ At most nB calls with lines 3 to 7 in time O(1), and at
most nB calls without, in time O(1) too.

⇒ Complexity : O(nB + nB) = O(nB)
32
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Complexity : Subset sum
On rappelle que G = (V ,E ), on note n = |V | et m = |E |.
1: function dMemo(v)
2: if T (v) is empty then
3: if v = M then
4: return 0
5: T (v)← min

u∈Γ+(v)
(dMemo(u) + ω(v , u))

6: return T (v)

Lines 3 to 5 are done at most once per node v ∈ V

⇒ At most m =
∑
v∈V

deg(v) recursive calls to dMemo , deg(v) per v ∈ V .

⇒ At most n calls with lines 3 to 5 in time O(deg(v)), and at most
m − n calls without, in time O(1) too.

⇒ Complexity : O(
∑
v∈V

deg(v) +m − n) = O(2m − n) = O(m)
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Iterative version

The two versions (usually) have the same complexity: on the worst
case, the array T is fully filled.

Warning : special cases may occurs.
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Sometimes it does not work.
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Recursive combinatorial explosion
We want to transform a binary number into another using
transformation rules. Each rule transform a number into a bigger
number.
For example :

0
(1)−−→ 10

1
(2)−−→ 01

101
(3)−−→ 01001

010
(4)−−→ 0111

We can now transform numbers
0

(1)−−→ 10
(2)−−→ 010

(4)−−→ 0111
(2)−−→ 01011

(3)−−→ . . .
Question : we are given two binary numbers x and y and a set T of
m transformation rules, it is possible to transform x into y with the
rules of T ? 36
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Recursive combinatorial explosion

There is a dynamic programming algorithm to solve the problem.
function f (x , y)

if |x | > |y | then
return FALSE

else if x = y then
return TRUE

if T (x , y) is empty then
T (x , y)← FALSE
for all rule t ∈ T do

for all way to apply t to x do
T (x , y)← T (x , y) ∨ f (t(x), y)

return T (x , y)
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Recursive combinatorial explosion

But we need to store too many information (2|y |−|x | cells in T ).
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Wrong recursion
Latin square problems

Input
An empty grid with n × n cells

Output
n cells such that

exactly one cell per line and
column
maximize the minimum
distance between two chosen
cells.
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Wrong recursion

×
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×
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Wrong recursion

No obvious way to generate a recursive function.
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In the syllabus, to be seen in tutorials

How to find the solution in addition to the value of the
solution? (for instance, how to find a shortest path in addition
to the cost of the shortest path?; how to find the subset
instead of only proving it exists, . . . )
The Roy-Floyd-Warshall algorithm : find all the pair of
shortest paths in a graph.
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