Dynamic programming

Recherche opérationnelle
Dimitri Watel - ENSITE

2024

Dynamic programming is a method for solving prob-
lems, it is not an algorithm but a way to build an algo-
rithm.

1 Recurrence relation

Dynamic programming is a way to compute the result of
a recursive algorithm. In order to solve a problem with
the dynamic programming method, the first step consists
in finding a recurrence relation that can be solved with
a recursive algorithm.

In the rest of the course, we consider the three follow-
ing example.

The Fibonacci sequence

Ensure: The i-th element of the Fibonacci sequence
starting with 0 and 1.
function f(7)
if : <1 then
return ¢
return f(i — 1)+ f(i —2)

The subset sum problem
Require: Two integers ¢ € [0;n] and b € [0; B] ; and n
non-negative integers pi,po, ..., Pn
Ensure: Check if there exists some subset I of [1; 4] such
that Zjeij =b
function g¢(i,b)
if i <0 then
return (b =0)
if b —p; > 0 then
return g(i —1,b—p;) Vg(i — 1,b)
else
return g(i — 1,b)

The shortest path in a DAG
Require: A DAG (directed acyclic graph) G with
weights w on the arcs, two nodes v and ¢ of G
Ensure: The shortest path from v to t
function d(v)
if v =t then
return 0

return min

Jmin (d(w) + w(v.w)

2 Memoization

The memoization is one of the two dynamic programming
techniques and consists in storing the results of each re-
cursive call so that, when the call is done a second time,
the computation is not done twice.

Memoization is a mechanical process that can be easily
executed by a computer (for example, by a compiler in
a way that is transparent to the user). Below, we revisit
the three previous examples using the method.

In each algorithm, we consider we have access to an
empty and global association table T that accept any
type of key and value.

The Fibonacci sequence
function fisemo(?)
if T'(i) is empty then
if 1 <1 then
T(i) « i
else
T(Z) < f]\/Iemo(i - 1) + fMemo(i - 2)
return T'(7)

The subset sum problem

function gMemo(i7 b)
if T'(i,b) is empty then
if i =0 then
T(i,b) + (b= 0)
else if b — p; > 0 then
T(i,b) < g(i —1,b—p;) Vg(i —1,b)
else
T(i,b) « g(i —1,b)
return T'(i,b)

The shortest path in a DAG

function dpsemo(v)
if T'(v) is empty then
if v = s then
T(v) « 0
else

T(v) < min

weTt () (drremo(u) + w(v,u))

return 7T'(v)



2.1 Execution example and comparison
with the naive version

Let’s show an execution example on the shortest path.
We consider the following graph G in which we are look-
ing for the shortest path from a to t.

3 7
F——()—" =)

In the figures below, each tree represents an execution
and each node is a recursive call. The value of the node
v given as input is indicated on the node. Above a node,
on its incoming edge, the returned value of the recursive
call is shown

arglf we apply the naive algorithm, we will have the
following execution.

We observe a small flaw in the naive algorithm; it calls
the node ¢ multiple times and executes exactly the same
recursive calls twice. In an arbitrary graph, this can oc-
cur on many nodes and lead to combinatorial explosion.

If we apply the memoization method, we will have the
following execution instead. When the second call to ¢
is made, we will have already stored the result in the
table T'. Therefore, it is not necessary to redo the entire
calculation.

2.2 Complexity calculation

We consider as elementary operations: arithmetic oper-
ations, boolean operations, conditions, the start of a loop
iteration, assignments, returning a value, and calling a
function.

Theorem 2.1. Let N be the number of possible entries
for the recursive calls and E be the mazimum number
of elementary operations within a recursive call. Then
the complezity of the associated memoization algorithm
is bounded by O(NE).

Example 1. We consider the subset sum example. We
have two integers as input, ¢ and b. The integer ¢ is
between 0 and n, and b is between 0 and B. Therefore,
N=(n+1)(B+1)=0(nB).

The maximum number of elementary operations per-
formed by a recursive call is constant (there is no loop,
the number of operations does not depend on i and b).
Therefore, E = O(1)

Thus, the complexity of the algorithm is, according to
this theorem, O(nB).”

Proof. When the function is called with an input for the
first time, it can perform at most E elementary opera-
tions during that call. Since there are N possible inputs,
the total number of elementary operations performed by
the function calls when the input is seen for the first time
is O(NE).

During each new call to the function, the result is
stored in T'. Therefore, any call made with an already
seen input will only execute the following operations:
check if T' contains the input and return the value in
T. There will be no new recursive call. These calls are
then executed in O(1).

Thus, the total number of elementary operations per-
formed is O(N E) plus the number of recursive calls made
with an already seen input. We still need to determine
how many function calls there are in total to compute
the complexity.

Recursive calls can only occur when the function is
called with an input for the first time. Since calling
the function is an elementary operation, there cannot be
more than F new recursive calls. Therefore, the function
cannot be called more than O(NE) times.

Thus, the complexity is O(NE + NE)=O(NE). O

This theorem only indicates an upper bound; we can
be a bit more precise if we have information about the
algorithm.

Memoization is easy to implement, but its complexity
and actual computation time are difficult to assess. Ad-
ditionally, it depends on the efficiency of the language in
handling recursive functions.



3 Iterative method

The iterative dynamic programming technique consists
in solving first the terminal subproblems, and then in
solving every subproblems by going back through the
recursive calls until the problem is solved. Every inter-
mediate result is stored.

It is often considered that this version is THE method
of dynamic programming. But note that memoization
does the same thing in the opposite direction. It is some-
times said that memoization is a Top-Down method,
while iterative dynamic programming is a Bottom-up
method.

Like in the memoization part, we assume we have ac-
cess to a global and empty associative table T that ac-
cepts any type of key and value. We want to store in
T the results of all the necessary recursive calls for the
computation. To do so, we need to reverse the recur-
sive calls: in T', we only store the result of a call if the
results it needs to compute its own result have already
been stored. In other words, in the tree representing the
execution of the computation, we need to go back up
the nodes from the leaves to the root. We will see this
through the three previous examples.

The Fibonacci sequence We seek to calculate the n-
th element of the sequence. Each recursive call is f(¢)
with 4 from 0 to n. We note that during the execution of
f (@), the recursive calls decrement the value of i. If we
calculate f(i—1) before f(i), we get the results in reverse
order. The base cases are i = 0 and ¢ = 1. Therefore, it
is sufficient to compute f(i) for i varying from 0 to n.
function frie-(n)

T(0)«+ 0

T(1) «+1

for ¢ from 2 to n do

TE)«TE—-1)+T6G—2)

return T'(n)

The subset sum problem We are trying to deter-
mine whether there exists a subset I of [1;n] such that
>_jerpbj < B. Each recursive call is f(i,b) with i from
0 to n and b ranging from 0 to B. We note that during
the execution of f(i,b), the recursive calls decrement the
value of i. If we compute f(i—1,b) for all b before f(i,b)
for all b, we get the results in reverse order. The base
cases are ¢ = 0 for all b. Thus, it is sufficient to compute,
for ¢ varying from 0 to n, the value of f(7,b) for b varying
from 0 to B.

function frie-(n, B)
for b from 0 to B do
T(0,b) + (b= 0)
for i from 1 to n do
for b from 0 to B do
if b > p; then
T(i,b) <~ T(i—1,b—p;) VT (i —1,b)
else
T(i,b) + T(i—1,b)
return T'(n, B)

The shortest path in a DAG We want to find the
shortest path from s to ¢ in a DAG G. Each recursive call
is d(v) with v being a node in G. We note that, during
the execution of d(v), the recursive calls only invoke the
successors of v. If we compute d(w) for every successor
w of v before d(v), we get the results in reverse order.
The terminal case is d(t). Therefore, it is sufficient to
calculate d(v) for every node v by making the calls in a
reversed topological ordering of the graph (such an order
is a list of nodes where the predecessors of a node w
appear after w, and such an order always exists in a
DAG).
function drser(5)

T(M)=0

L <+ Reversed topological ordering of G\ M

for ve L do

T(v) < min
uwel+ (v)
return 7'(5)

(T'(u) + w(v, u))

In conclusion of this section, there isn’t really a clear
method for implementing the iterative method. Unlike
memoization, which can be automated, one must have
a deep understanding of the problem. This is obvious
in the last example where knowledge of graph theory is
necessary to produce the algorithm.

An advantage of the iterative method is that it is (gen-
erally) easier to deduce complexity by examining the
algorithms produced. Furthermore, the algorithms are
not recursive, so the associated programming language
doesn’t need to handle recursive calls efficiently.

A drawback compared to the memoization method is
that the iterative approach often generates algorithms
that compute (and store) many more results than nec-
essary, unlike memoization. For example, in the subset
sum problem, the iterative algorithm fills 7" with B + 1
values for each integer i. However, by looking at the re-
cursive algorithm, we can see that memoization will not
store more than one value when i = n, two values when
i =n— 1, four when i = n — 2, and so on. This issue can
sometimes be partially mitigated by noting that it is not
necessary to store the entire table 7', but this does not
reduce the time complexity of the algorithm.

Here is, for example, a variant that works very well for
the subset sum problem:



function frer(n, B)
for b from 0 to B do
T(0,b) + (b=0)
for 7 from 1 to n do
for b from 0 to B do
Retirer la clef (i — 2,b) de T si elle existe.
if b > p; then
T(i,b) « T(i—1,b—p;) VT(i—1,b)
else
T(i,b) + T(i—1,b)
return T'(n, B)

It can be seen that, indeed, T'(i — 2,b) is never used,
o it is not necessary for the calculation.

Remark 1. Tt can be observed that the 3 naive algorithms
presented at the beginning of the course are exponential,
while the 6 dynamic programming versions are polyno-
mial (or almost, but I will not go into details here). This
is of course not a general rule; there exist problems for
which there are exponential naive recursive algorithms
that dynamic programming fails to improve sufficiently
to make them polynomial. One might think, for example,
of the traveling salesman problem.



	Recurrence relation
	Memoization
	Execution example and comparison with the naive version
	Complexity calculation

	Iterative method

