Chapitre 2 : Ordonnancement ENSIIE - Module de Recherche Opérationnelle

Dimitri Watel (dimitri.watel@ensiie.fr)

2024

Problème d'atelier à 2 machines

Plusieurs points important :

- La machine M_1 ne traite les demandes que une par une
- La machine M_2 ne traite les demandes que une par une
- Les machines M_1 et M_2 peuvent travailler en parallèle
- Chaque ours doit être traité sur la machine M₁ avant la machine M₂.
- Selon la demande , les machines mettent plus ou moins de temps.

Problème d'atelier à 2 machines

On doit effectuer 8 tâches j_1 à j_8 .

Voici un tableau indiquant combien de temps (en minute) met chaque machine pour travailler sur chaque tâche.

$t(j_i, M_j)$	j_1	j ₂	j ₃	j ₄	<i>j</i> 5	<i>j</i> 6	j ₇	<i>j</i> 8
M_1	10	30	20	60	40	40	50	30
M_2	15	50	100	30	10	90	20	40

Question : comment effectuer les 8 tâches en un minimum de temps?

L'algorithme de Johnson

$t(j_i, M)$	i)	j ₁	<i>j</i> 2	<i>j</i> 3	j ₄	<i>j</i> 5	<i>j</i> 6	j ₇	<i>j</i> 8
M_1		10	30	20	60	40	40	50	30
M_2		15	50	100	30	10	90	20	40

- Partitionner l'ensemble des tâches en
 - $A = \{i_i, t(i_i, M_1) < t(i_i, M_2)\}$
 - $B = \{j_i, t(j_i, M_1) > t(j_i, M_2)\}$
- Ordonner A par ordre **croissant** de $t(j_i, M_1)$. On obtient une liste S_A .
- Ordonner B par ordre décroissant de $t(j_i, M_2)$ On obtient une liste S_B .
- Renvoyer la concaténation de S_A et S_B .

(voir l'exemple au tableau)

L'algorithme de Johnson

Propriété

L'algorithme de Johnson est optimal.

Par contre:

- Il ne fonctionne plus tel quel si on rajoute des contraintes (tel tâche doit être effectuée avant tel tâche; la machine M_1 ne peut être utilisée plus de x minutes d'affilée, ...)
- Il ne fonctionne plus si on rajoute une machine, mais peut être adapté dans certains cas...

Si on supprime la contrainte d'ordre

Plusieurs points important :

- La machine M_1 ne traite les demandes que une par une
- ullet La machine M_2 ne traite les demandes que une par une
- Les machines M_1 et M_2 peuvent travailler en parallèle
- Chaque ours doit être traité sur la machine M₁ avant la machine M₂. Un ours ne peut être traité sur la machine M₁ et la machine M₂ en même temps.
- Selon la demande, les machines mettent plus ou moins de temps.

Temps optimal

Pour simplifier, on note $a_i = t(j_i, M_1)$ et $b_i = t(j_i, M_2)$

Soit
$$T_1 = \sum_i a_i$$
.

Soit
$$T_2 = \sum_{i=1}^{n} b_i$$

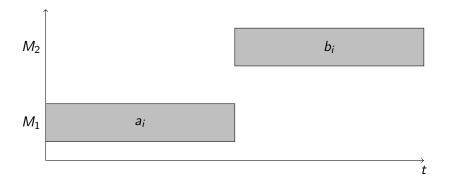
Soit
$$T_2 = \sum_{i}^{r} b_i$$
.
Soit $M = \max_{i} a_i + b_i$.

Théorème

Le temps optimal est max T_1 , T_2 , M.

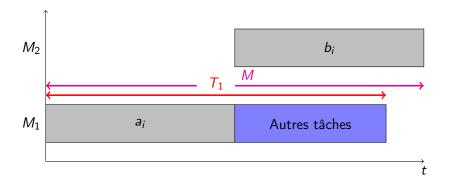
Comment atteindre ce temps?

Soit i tel que $M = a_i + b_i$. Alors la solution suivante est optimale



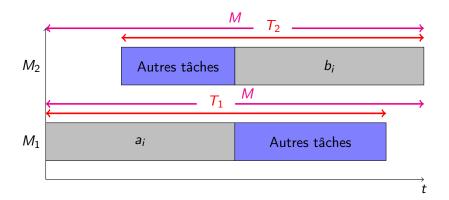
1 : Placer la tâche i

Soit i tel que $M = a_i + b_i$. Alors la solution suivante est optimale



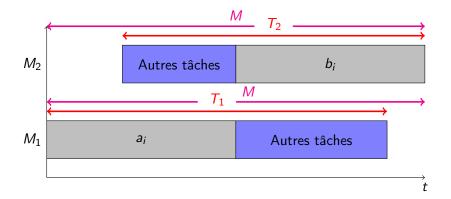
2 : Il reste de la place pour les autres tâches sur M_1 car $M \geq T_1$

Soit i tel que $M = a_i + b_i$. Alors la solution suivante est optimale



3 : Il reste de la place pour les autres tâches sur M_2 car $M \geq T_2$

Soit i tel que $M = a_i + b_i$. Alors la solution suivante est optimale



Aucune tâche n'est effectuée en même temps sur les 2 machines.

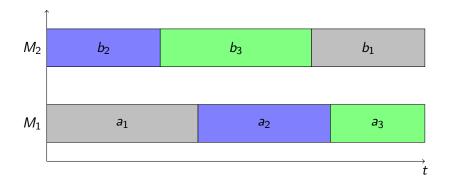
Cas 2 : $M < T_1$ ou T_2

Ramenons nous à $T_1 = T_2$

Si $T_1 < T_2$, on ajoute $T_2 - T_1$ tâches fictives avec $a_i = 1$ et $b_i = 0$ Si $T_2 < T_1$, on ajoute $T_1 - T_2$ tâches fictives avec $a_i = 0$ et $b_i = 1$ Ainsi $T_1 = T_2$.

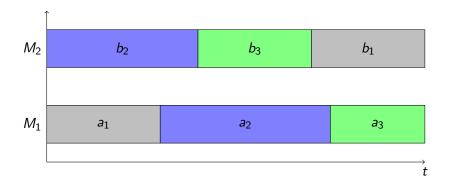
(Remarque : ces tâches peuvent être placées n'importe où sans provoquer de conflit.)

La procédure ci-dessous permet de trouver une solution optimale.



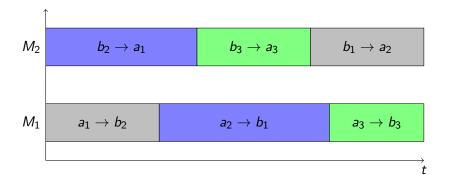
Si $a_1 \ge b_2$ et $b_1 \ge a_3$, la solution ci-dessus ne provoque aucun conflit.

La procédure ci-dessous permet de trouver une solution optimale.



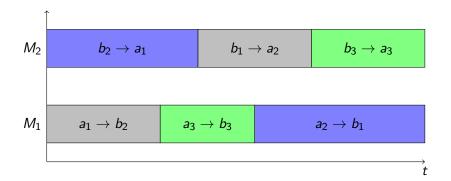
Si $a_1 < b_2$, il y a conflit (avec la tâche 2), mais alors ...

La procédure ci-dessous permet de trouver une solution optimale.



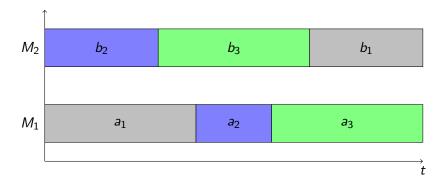
Si $a_1 < b_2$, il y a conflit (avec la tâche 2), mais alors ... renommons j_1 en j_2 et j_2 et en j_1 et M_1 en M_2 et M_2 en M_1 . On a alors $a_1 \ge b_2$. (avec les nouvelles valeurs de a_1 et b_2)

La procédure ci-dessous permet de trouver une solution optimale.



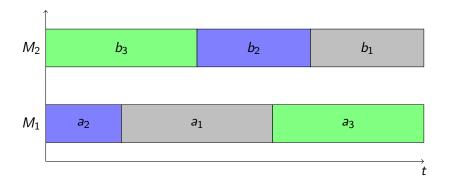
Si $a_1 < b_2$, il y a conflit (avec la tâche 2), mais alors ... renommons j_1 en j_2 et j_2 et en j_1 et M_1 en M_2 et M_2 en M_1 . On a alors $a_1 \ge b_2$. Et on peut retenter la solution proposée au slide 13.

La procédure ci-dessous permet de trouver une solution optimale.



Si $a_1 \ge b_2$ mais $b_1 < a_3$, il y a conflit (avec la tâche 3), mais alors ...

La procédure ci-dessous permet de trouver une solution optimale.



Si $a_1 \ge b_2$ mais $b_1 < a_3$, il y a conflit (avec la tâche 3), mais alors ... la solution ci-dessus fonctionne car $a_1 + a_3 > b_1 + b_2$. (Rappel : $a_3 \le b_1 + b_2$ car $M < T_1, T_2$)

Cas 2.2 : $M < T_1 = T_2$ et il y a n > 3 tâches

Astuce

On peut toujours se ramener à 3 tâches avec l'algorithme suivant :

Créer 3 ensembles J_1, J_2, J_3 vides

Pour k de 1 à n Faire

Pour p de 1 à 3 Faire

Si
$$\sum_{i \in J_p \cup \{k\}} a_i + b_i \le T_1$$
 Alors
Ajouter k à J_p

Théorème

À la fin, toutes les tâches sont dans J_1 , J_2 ou J_3 .

Cas 2.2 : $M < T_1 = T_2$ et il y a n > 3 tâches

L'algorithme est donc le suivant :

- construire les trois ensembles J_1, J_2 et J_3
- créer l'instance j_1', j_2' et j_3' où $a_i' = \sum_{j_k \in J_i} a_k$ et $b_i' = \sum_{j_k \in J_i} b_k$
- trouver une solution avec l'algorithme du cas 2.1
- remplacer les occurrences de j'_1 par les tâches de J_1 , dans n'importe quel ordre. De même pour j'_2 et j'_3 .

A la fin il ne peut y avoir de conflit puisque cela impliquerait qu'il y a un conflit avec une des tâches $j_{1'}$, $j_{2'}$ ou $j_{3'}$.

Au programme, mais vu en TD

- Adapter PERT et/ou Potentiel Tâche (MPM) avec une contrainte supplémentaire.
- Algorithme de Johnson dans le cas de 3 machines M_1 , M_2 , M_3 telles que
 - $\bullet \max_{i} t(j_i, M_2) \leq \min_{i} t(j_i, M_1)$
 - $\max_{i} t(j_i, M_2) \leq \min_{i} t(j_i, M_3)$.