
Production planning

Recherche opérationnelle
Dimitri Watel - ENSIIE

2024

In this chapter, we will focus on two classic schedul-
ing problems. Scheduling encompasses all problems that
involve deciding the order of jobs or events. These are
situations encountered in many industrial contexts. One
can think of project management, a production line, the
organization of classes, computations on a machine, mov-
ing, and so on.

Part of the scheduling problems involves assuming that
we need to execute jobs (undetermined, which is not
important here) and that we have machines to perform
these jobs. Each job must go through all the machines
but does not take the same amount of time on each ma-
chine. A job cannot be executed on two machines si-
multaneously, and a machine can only handle one job at
a time. Other specific constraints may be added. The
objective is to process all jobs on all machines in the
minimum amount of time.

1 Two machines with precedence
constraint

In this section, we assume that we have two machines,
M1 and M2, and that each job must be executed first on
machine M1 and then on machine M2.
The following example shows that it is possible to have

two different durations depending on the order. The jobs
are denoted as jk (where j stands for job). The table
indicates the duration of each job on each machine.

Machine
Job

j1 j2 j3 j4 j5

M1 5 3 2 1 4
M2 3 1 4 2 5

Let’s consider the order j1, j2, j3, j4, j5. We obtain the
following Gantt chart, where each line indicates which
job is being processed by the machine at each time step.

M1 1 1 1 1 1 2 2 2 3 3 4 5 5 5 5
M2 - - - - - 1 1 1 2 - 3 3 3 3 4 4 5 5 5 5 5

If we consider the order j4, j3, j5, j1, j2, we obtain a
shorter duration. This is an optimal solution.

M1 4 3 3 5 5 5 5 1 1 1 1 1 2 2 2
M2 - 4 4 3 3 3 3 5 5 5 5 5 1 1 1 2

There is a very simple algorithm to find the optimal
solution. It is called the Johnson algorithm. In the fol-
lowing algorithm, we denote ti(k) as the duration of job
jk on machine Mi.

Algorithm 1 Johnson algorithm

1: A← {k|t1(k) ≤ t2(k)}
2: B ← {k|t1(k) > t2(k)}
3: Sort A by increasing order on t1
4: Sort B by decreasing order on t2
5: return concat A and B

This algorithm is polynomial. Its complexity is in the
order of O(n log n) where n is the number of jobs. John-
son published and proved the optimality of his algorithm
in the following paper:

S. M. Johnson. “Optimal two- and three-stage pro-
duction schedules with setup times included”. In: Naval
Research Logistics Quarterly 1.1 (1954), pp. 61–68. doi:
https://doi.org/10.1002/nav.3800010110

There are three steps in the proof.

Theorem 1.1. There exists an optimal solution where
the order of jobs on machine M1 and on machine M2 is
the same.

Proof. Let there be an optimal solution with an order O1

of jobs on machine 1 and an order O2 of jobs on machine
2.

Suppose there exist two jobs jk and jl such that

• jk is before jl on M1

• jl is before jk on M2

According to the precedence constraints on the machines,
in the Gantt chart of the jobs, jobs jl and jk appear on
M2 after the completion of job jl on M1.

M1 · · · k k · · · l l l · · ·
M2 · · · · · · l l · · · k k k

1

https://doi.org/https://doi.org/10.1002/nav.3800010110


We can assume without loss of generality that jk ar-
rives just after jl in O2. In fact, for any successive jobs
in O2, if they are in the same order in O1, then O1 = O2.
If, on M2, there is a moment of inactivity between

jl and jk, then we can move jk to the left until that
inactivity is eliminated. It can be seen in the following
example (where inactivity is represented by a dash) that
this does not introduce any violation of the constraints,
since jk always completes before jl on machine M1 and
we have not altered the other jobs.
Once the inactivity is removed, we can swap jobs jl and

jk on M2 without creating any conflict. The following
table represents these two steps.

M1 · · · k k · · · l l l · · ·
M2 · · · · · · l l - k k k
M2 · · · · · · l l k k k -
M2 · · · · · · k k k l l -

We then have a new order of jobs that is valid and
whose total duration is less than or equal to the initial
duration. In fact, it is equal because the initial order was
supposed to be optimal. Thus, we have another solution
that is also optimal. We can therefore replicate these
steps to produce different optimal orders until O2 = O1.
We then have an optimal solution with the desired prop-
erty.

The previous theorem indicates that there is no need
to focus on solutions where the orders are different.

Theorem 1.2. If O is a job order, where oi is the ith

job in the order. If, for all i < k, min(t1(oi), t2(ok)) ≤
min(t2(oi), t1(ok)), then O is optimal.

Remark 1. The proof here is somewhat long and comes
from the previously cited article. It is not necessary to
master it or to know it by heart. It is presented here for
your general knowledge (and because the original article
is not easy to follow).

Proof. Let O∗ be an optimal order. We can transition
from O∗ to O by performing only successive swaps of
jobs. For example, to go from the order (j2, j3, j1, j4) to
(j1, j3, j2, j4), we can go through the following orders:

• (j2, j3, j1, j4)

• (j3, j2, j1, j4)

• (j3, j1, j2, j4)

• (j1, j3, j2, j4)

Indeed, if O∗ ̸= O, then there exist two jobs oi and
ok such that i < k and ok is before oi in the order O∗.
There necessarily exist two such jobs that are successive
in O∗ (otherwise, O∗ = O). We can therefore perform
the swap and obtain a new order O1. We can repeat this
operation until we obtain O.

Let us denote (O0 = O∗, O1, O2, . . . , Op = O) as the
different successive orders. We will show that the hy-
pothesis made on the different jobs implies that, for all
q ∈ {1, 2, . . . , p}, Oq ends at the same time or later than
Oq+1. By transitivity, we will have that O∗ ends at the
same time or later than O, and thus, by the optimality
of O∗, we will conclude that O is also optimal.

It is important to note that, in Oq, we always exchange
two jobs oi and ok such that i < k and oi is just after ok
in the order Oq, which will allow us to use the hypothesis
of the lemma.

To simplify the reading of the following, we will denote
the two orders Oq and Oq+1 respectively as B and A. We
denote ai (respectively bi) as the ith job of the order A
(resp. B). We want to show that A finishes before B. We
assume that jobs k and k+1 have been swapped between
A and B (thus ak = bk+1 and bk = ak+1). We also know
that ak is a job oi and ak+1 is a job ol of the order O such
that i < l. We now check that min(t1(ak), t2(ak+1)) ≤
min(t2(ak), t1(ak+1)) by assumption.
Let’s start by determining when order A finishes on

machine M2. We assume that, in A, each job is sched-
uled as early as possible: on machine M1, each job is
scheduled after the end of the previous one, and there is
no inactivity time. On machine M2, let xi be the dura-
tion of the inactivity time just before the start of job ai
on M2. In the following example, x1 = 5, x3 = 1, and
x2 = x4 = x5 = 0.

M1 1 1 1 1 1 2 2 2 3 3 4 5 5 5 5
M2 - - - - - 1 1 1 2 - 3 3 3 3 4 4 5 5 5 5 5

Thus, machine M2 finishes at time
∑n

i=1(t2(ai)+xi) =∑n
i=1 t2(ai) +

∑n
i=1 xi =

∑n
i=1 t2(ji) +

∑n
i=1 xi.

Similarly, if in the solution resulting from order B, we
denote yi as the duration of the idle time just before the
start of job bi on M2, then machine M2 finishes at time∑n

i=1 t2(ji) +
∑n

i=1 yi.
We are left to show that

∑n
i=1 xi ≤

∑n
i=1 yi to prove

the desired result. We can easily verify the following
equalities:

x1 = t1(a1)

x2 = max(t1(a1) + t1(a2)− t2(a1)− x1, 0)

x3 = max(

3∑
l=1

t1(al)−
2∑

l=1

t2(al)−
2∑

l=1

xl, 0)

· · ·

xi = max(

i∑
l=1

t1(al)−
i−1∑
l=1

t2(al)−
i−1∑
l=1

xl, 0)

And then

i∑
l=1

xl = max(

i∑
l=1

t1(al)−
i−1∑
l=1

t2(al),

i−1∑
l=1

xl)

2



Thus, we set

Ki =

i∑
l=1

t1(al)−
i−1∑
l=1

t2(al)

And then

i∑
l=1

xl =
n

max
i=1

Ki

Similarly in B we have the following inequalities

Li =

i∑
l=1

t1(bl)−
i−1∑
l=1

t2(bl)

i∑
l=1

yl =
n

max
i=1

Li

Because al = bl if l ̸∈ {k, k + 1}, we have

Ki = Li if i ̸∈ {k, k + 1}

Thus, if we prove that max(Kk,Kk+1) ≤
max(Lk, Lk+1), then

∑n
i=1 xi ≤

∑n
i=1 yi. Finally,

by subtracting
∑k+1

l=1 t1(al) −
∑k−1

l=1 t2(al) from both
elements of the inequality, and remembering that
ak = bk+1 and bk = ak+1, we obtain

max(Kk,Kk+1) ≤ max(Lk, Lk+1)

max(−t1(ak+1),−t2(ak)) ≤ max(−t2(ak+1),−t1(ak))
min(t2(ak+1), t1(ak)) ≤ min(t1(ak+1), t2(ak))

This last inequality is precisely the hypothesis made
about jobs ak and ak+1. Therefore, we have A ending
before B, and as explained above, O ends before O∗,
which means it is an optimal order.

Theorem 1.3. If O is the order returned by Johnson’s
algorithm, it satisfies the assumptions of Theorem 1.2.

Proof. This proof is left as an exercise in the tutorial.

This last theorem, coupled with the previous one,
shows that Johnson’s algorithm is optimal. Therefore,
we have a polynomial algorithm.

Remark 2. These results are only valid with two ma-
chines. The algorithm is not intended to work with three
machines. In general, adding machines or constraints (for
example, job 4 must be completed by tomorrow on ma-
chine M2 because the client has paid for us to expedite
job 4) makes the problem more difficult. We do not know
of a polynomial algorithm to solve the more general ver-
sion of the problem. However, there are cases, such as
with three machines, where Johnson’s algorithm can be
helpful. An example is provided in the exercises of the
tutorial.

2 Two machines without prece-
dence constraint

In this section, no order is imposed on the machines.
Thus, each job must go through each of the machines but
can do so in a different order than the other jobs. We will
show that, in this case, there is also a polynomial-time
algorithm to solve the problem. Let’s first consider the
example from the previous section:

Machine
Job

j1 j2 j3 j4 j5

M1 5 3 1 2 4
M2 3 1 4 2 5

A solution would be the following

M1 1 1 1 1 1 2 2 2 3 4 4 5 5 5 5
M2 3 3 3 3 4 4 5 5 5 5 5 1 1 1 2

It is impossible to get a better solution because the
machines have no inactivity. It is worth noting that, un-
like the first problem, a solution is not simply a sequence
of jobs. For each job, it is necessary to specify the time
at which it starts on M1 and the same on M2. Given a
solution O, we denote oik as the start time of job ji on
Mk.

In the following, we set

• M = maxnk=1(t1(k) + t2(k))

• T1 =
∑n

k=1 t1(k)

• T2 =
∑n

k=1 t2(k)

• T = max(T1, T2)

If T1 < T2, then we preprocess the instance by adding
dummy jobs. Each dummy job satisfies t1(k) = 1 and
t2(k) = 0. By adding T2 − T1 dummy jobs, we have
T1 = T2 = T . We act similarly if T2 < T1.
We now show the following theorem:

Theorem 2.1. One can build in polynomial time an op-
timal solution with duration max(M,T ).

Lemma 2.1. The duration of any solution is at least
max(M,T ).

Proof. Let’s assume we have a feasible schedule O. The
finishing time tf of the order O is after the completion
of the execution of each machine. At best, each machine
must work for a duration T . Therefore, T ≤ tf . More-
over, each job must be completed, and since a job cannot
be executed on both machines at the same time, the or-
der O finishes after a duration of t1(i) + t2(i) for every
job i. Thus, M ≤ tf .

3



Lemma 2.2. If M ≥ T , we can construct in polynomial
time an optimal solution whose duration is M .

Proof. Let i such that t1(i) + t2(i) = M . We can con-
struct a solution of duration M in this way, where A
corresponds to all the jobs except i.

M1 - A A · · · A A i i · · · i i i
M2 i i i · · · i i A A · · · A - -

Lemma 2.3. If T ≥ M and if we have 3 jobs, we can
construct an optimal solution in constant time whose du-
ration is T .

Remark 3. Building an optimal solution in constant time
is not difficult here; it just involves enumerating all pos-
sible solutions. However, proving that we can construct
a solution of duration T for any instance is a bit more
complicated.

Proof. We will show that there is always a solution with-
out any machine being inactive.

First, let’s assume that t1(1) ≥ t2(2). If t2(1) ≥ t1(3)
then there exists a solution of duration T with the fol-
lowing solution:

M1 1 1 1 · · · 1 1 2 2 · · · 2 2 3 3 3
M2 2 2 2 · · · 2 3 3 3 · · · 3 1 1 1 1

If on the other hand t2(1) < t1(3), the following solu-
tion is achievable and has a duration of T .

M1 2 2 2 · · · 2 2 1 1 · · · 1 1 3 3 3
M2 3 3 3 · · · 3 3 3 2 · · · 2 2 2 1 1

This solution is indeed feasible. In fact, job 1 does not
run on both machines at the same time because t2(1) <
t1(3). Similarly, the same holds for job 2 because t1(3)+
t1(1) > t2(2) + t2(1). Finally, there is no conflict for job
3 because
t1(3) ≤M − t2(3) ≤ T − t2(3) = t2(1) + t2(2).

Let’s assume now that t1(1) < t2(2). We will first show
that we can reduce the case to one where t1(1) ≥ t2(2).
We consider the following new instance:

Machine
Job

j′1 j′2 j′3

M ′
1 t2(2) t2(1) t2(3)

M ′
2 t1(2) t1(1) t1(3)

We notice that this is the same instance as the original
instance where we exchanged M1 and M2 and where we
exchanged j1 and j2. Therefore, both have exactly the
same optimal solutions. In this new instance, we denote
t′k(i

′) as the time of job j′i on machine M ′
k. We observe

that t′1(1
′) ≥ t′2(2

′). We can apply, in this instance, one of
the two solutions of duration T proposed at the beginning

of the proof depending on whether t′2(1
′) ≥ t′1(3

′) or
not.

Lemma 2.4. If T ≥ M and if we have more than 3
jobs, we can construct an optimal solution in constant
time whose duration is T .

Proof. We can always simplify the instance to get only 3
left jobs:

Create 3 empty sets J1, J2, J3
for k from 1 to n do

for p from 1 to 3 do
if

∑
i∈Jp∪{k}

t1(i) + t2(i) ≤ T1 then

Add jk to Jp
Continue the outer loop

In the example at the beginning of the section, we
would have J1 = {j1, j2}, J2 = {j3, j4} and J3 = {j5}.
If this algorithm assigns all jobs to J1, J2, or J3, then

we obtain a new instance, a super-instance, with 3 super-
jobs. We define tk(Jp) =

∑
ji∈Jp

tk(i). In the example,
we would then have

Machine
Job

J1 J2 J3

M1 8 3 4
M2 4 6 5

With lemma 2.3, we can find a solution in time T for
this super-instance.

M1 J1 J1 J1 J1 J1 J1 J1 J1 J2 J2 J2 J3 J3 J3 J3
M2 J2 J2 J2 J2 J2 J2 J3 J3 J3 J3 J3 J1 J1 J1 J1

In this solution of the super-instance, each super-job
Jk is not executed simultaneously on both machines. If
we replace this super-job with the jobs contained in the
original instance on both machines, then these jobs can-
not be on the same machine at the same time either. In
the example, we obtain the following result.

M1 1 1 1 1 1 2 2 2 3 4 4 5 5 5 5
M2 3 3 3 3 4 4 5 5 5 5 5 1 1 1 2

It remains to show that we correctly place all the jobs
in J1, J2, J3 and we obtain the result. Suppose the con-
trary, let jk be the first job that is not placed in J1, J2, J3.
Then, for all p ∈ J1; 3K,

∑
i∈Jp∪{k}

t1(i) + t2(i) > T

If we sum the 3 inequalities for the 3 values of p

3∑
p=1

∑
i∈Jp

t1(i) + t2(i) + 3 · (t1(k) + t2(k)) > 3T (1)

4



However, each job is in at most one set Jp and jk is in
no such set.

3∑
p=1

∑
i∈Jp

t1(i) + t2(i) + t1(k) + t2(k) ≤
n∑

i=1

t1(i) + t2(i)

3∑
p=1

∑
i∈Jp

t1(i) + t2(i) + t1(k) + t2(k) ≤ 2T (2)

By inequalities (1) and (2)

2T + 2 · (t1(k) + t2(k)) > 3T

t1(k) + t2(k) >
T

2
(3)

By inequalities (2) and (3)

3∑
p=1

∑
i∈Jp

t1(i) + t2(i) <
3T

2
(4)

Finally, for every p ̸= p′ and each job jl placed in Jp′ ,∑
i∈Jp

t1(i) + t2(i) + t1(l) + t2(l) > T . Indeed, otherwise,

jl would have been placed in Jp instead of Jp′ . Thus,
particularly∑

i∈J1

t1(i) + t2(i) +
∑
i∈J2

t1(i) + t2(i) > T

∑
i∈J1

t1(i) + t2(i) +
∑
i∈J3

t1(i) + t2(i) > T

∑
i∈J2

t1(i) + t2(i) +
∑
i∈J3

t1(i) + t2(i) > T

2 ·
3∑

p=1

∑
i∈Jp

t1(i) + t2(i) > 3T

We thus have a contradiction with inequality 4, so all
the jobs are in J1, J2, and J3.

Proof of the theorem. Using lemmas 2.1, 2.2, and 2.4,
we can prove that there always exists a solution of dura-
tion max(M,T ) and that it can be constructed in poly-
nomial time.

5


	Two machines with precedence constraint
	Two machines without precedence constraint

