The problem
Problem formulation
How to find a maximum flow?
The Ford-Fulkerson algorithm
Minimum-cut

Chapter 3 : The maximum flow problem ENSIIE - Operations Research Module

Dimitri Watel (dimitri.watel@ensiie.fr)

2022

A road sizing problem

[x]: Maximum number of people on the road. What is the max. number of people leaving s to t?

A road sizing problem

Answer: 23

Which algorithm solves this problem? How to prove the result is optimal?

Problem formulation

Definition

A transportation network (also called flow network) is:

- a directed graph G = (V, A);
- two nodes $s \in V$ (the source) and $t \in V$ (the sink);
- the capacities of the arcs $c: A \to \mathbb{R}^+$.

Problem formulation

Definition

A transportation network (also called flow network) is:

- a directed graph G = (V, A);
- two nodes $s \in V$ (the source) and $t \in V$ (the sink);
- the capacities of the arcs $c: A \to \mathbb{R}^+$.

Definition

A *feasible flow* is a function f from A to \mathbb{R}^+ such that

- for every arc $a \in A$, $f(a) \in [0, c(a)]$ (capacity constraint)
- for every node $v \in V$ except s and t,

$$\sum_{a \in \gamma^{-}(v)} f(a) = \sum_{a \in \gamma^{+}(v)} f(a) \text{ (conservation constraint)}$$

Remark

Theorem

If f is a feasible flow, then, for every subset of node $V' \subset V \setminus \{s, t\}$, the conservation constraint is satisfied:

$$\sum_{\mathbf{a} \in \gamma^{-}(V')} f(\mathbf{a}) = \sum_{\mathbf{a} \in \gamma^{+}(V')} f(\mathbf{a}).$$

(see the board for an example)

Problem formulation

Definition

The value v of the flow f is the flow entering the sink t, or the flow outgoing from the source s.

$$v = \sum_{a \in \gamma^-(t)} f(a) - \sum_{a \in \gamma^+(t)} f(a)$$
 $v = \sum_{a \in \gamma^+(s)} f(a) - \sum_{a \in \gamma^-(s)} f(a)$

$$v = f_1 + f_2 - f_3 = f_4 - f_5 - f_6$$

Problem formulation

The maximum flow problem

- Input : a flow network (G, s, t, c).
- Feasible solution : a feasible flow f on G (satisfies the capacity constraint and the conservation constraint)
- ullet Optimal solution : a feasible solution f maximizing its value v.

Remark

We can add a fictive arc from t to s such that the flow f(t,s) always equals the value v of the flow f. In that case, the conservation constraint is also satisfied by s and t.

The nul flow

If we add α to every arc on a path from s to t, the value of the flow is increased by α .

Add 4 to the flow.

To be continued ... on board

Complete flow

Definition

We say a flow f is *complete* if, in G, every path from s to t contains a saturated arc a, *i.e.* f(a) = c(a).

WARNING

A complete flow is not necessarily a maximum flow.

Proof: according to the flow at the beggining of the course, the maximum flow is at least 23.

Idea : add 4 to (s, N) and (Y, t), and remove 4 to (Y, N). How to generalize this idea?

Définition

Considering a network (G, s, t, c) and a feasible flot f, an augmenting path μ is an (undirected) path linking s and t such that:

- for every arc a of μ directed from s to t (the *right* direction), f(a) < c(a). We write $a \in \mu^+$.
- for every arc a of μ directed from t to s (the *wrong* direction), f(a) > 0. We write $a \in \mu^-$.

Définition

Considering a network (G, s, t, c) and a feasible flot f, an augmenting path μ is an (undirected) path from s to t such that:

- for every arc a of μ directed from s to t (the *right* direction), f(a) < c(a). We write $a \in \mu^+$.
- for every arc a of μ directed from t to s (the wrong direction), f(a) > 0. We write $a \in \mu^-$.

Such a path may increase the value of the flow by at least

$$v
ightarrow v + \min \left(\min_{a \in \mu^+} \{ c(a) - f(a) \}; \min_{a \in \mu^-} \{ f(a) \}
ight)$$

(We add flow to the arc on the right direction, and we remove flow from the arc on the wrong direction.)

No more augmenting path. The flow is maximum.

How to find a maximum flow?

Theorem,

Given a flow network and a feasible flow, there is no augmenting path if and only if the flow is maximum.

Proof: later. We need stronger tools.

The Ford-Fulkerson algorithm: basis

Let
$$(G, s, t, c)$$
 be a flow network

- Let f be a nul flow on G
- ullet While there exists an augmenting path μ on f do

•
$$dv \leftarrow \min \left(\min_{a \in \mu^+} \{ c(a) - f(a) \}; \min_{a \in \mu^-} \{ f(a) \} \right)$$

• $\forall a \in \mu^+, f(a) \leftarrow f(a) + dv$

•
$$\forall a \in \mu^-, f(a) \leftarrow f(a) - dv$$

• Return f

1st version: the residual network

Definition

Let (G, s, t, c) be a flow network and a feasible flow f. We define the *residual network* as a graph H = (V, B) and a weight $\omega : B \to \mathbb{N}$ over the arcs of H such that :

- for every arc $a = (u, v) \in A$ such that f(a) < c(a), we add an arc $b = (u, v) \in B$, and the weight of b is $\omega(b) = c(a) f(a)$
- for every arc $a=(u,v)\in A$ such that f(a)>0, we add an arc $b=(v,u)\in B$, and the weight of b is $\omega(b)=f(a)$

(See the board for an example)

1st version: the residual network

Lemma

There is an augmenting path in G if and only if there is a path in H from S to t.

(See the board for a proof and an example)

2nd version: marking algorithm

- Mark the source s with " +"
- **2** For every arc $(u, v) \in A$ do
 - If u is marked, v is not marked and f(u, v) < c(u, v), then mark v with " + (u)"
 - If v is marked, u is not marked and f(u, v) > 0, then mark u with " (v)"
- 3 Restart 2 if at least one node was marked.

(See the board for an example)

2nd version: marking algorithm

Lemma

There is an augmenting path in G if and only if t is marked.

In that case, in order to build the path, we have to follow the markings backward from t.

(See the board for a proof and an example)

The minimum-cut problem

Definition

Let (G = (V, A), s, t, c) be a flow network. A *cut* that separates the source and sink, or s-t cut, is a partition of V into two subsets $S \uplus T = V$ such that $s \in S$ and $t \in T$.

The weight of the cut is
$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$
.

- The weight of an s-t cut is the sum of the capacities of the arcs entering T (similarly, the arcs leaving S)
- Removing those arcs cut every directed path from s to t.

The minimum-cut problem

The minimum-cut problem

- Input : a flow network (G, s, t, c).
- Feasible solution: a cut (S, T) that separates s from t
- Optimal solution: a minimum weight s-t cut.

Examples

Examples

Examples

The (weak) max-flow-min-cut theorem

Theorem

Let (G, s, t, c) be a flow network, f be a feasible flow on G of value v, and (S, T) be an s - t cut, then $c(S, T) \ge v$.

Proof: the flow entering t is no more than the flow entering T.

The (strong) max-flow-min-cut theorem

Theorem

Let (G, s, t, c) be a flow network, f be a maximum on G of value v, and (S, T) be a minimum s - t cut, then c(S, T) = v.

The proof shows also this theorem:

Theorem

Given a flow network and a feasible flow, there is no augmenting path if and only if the flow is maximum.

(Proof on board)

Compute a minimum cut

When the Ford-Fulkerson algorithm stops, 1st version.

- We proved that, in that case, there is no path from s to t in the residual network H.
- Let S be the set of nodes x such that there is a path from s to x in H, and let T be the other nodes.
- \bullet (S, T) is a minimum cut.

Compute a minimum cut

When the Ford-Fulkerson algorithm stops, 2nd version.

- In that case, we proved that t is not marked.
- Let S be the set of marked nodes and let T be the other nodes.
- (S, T) is a minimum s t cut.