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The Ford-Fulkerson algorithm
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A road sizing problem
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[x] : Maximum number of people on the road.
What is the max. number of people leaving s to t?
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

A road sizing problem
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[19/20]

Answer : 23
Which algorithm solves this problem?
How to prove the result is optimal?
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Problem formulation

Definition
A transportation network (also called flow network) is:

a directed graph G = (V ,A);
two nodes s ∈ V (the source) and t ∈ V (the sink);
the capacities of the arcs c : A→ R+.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Problem formulation

Definition
A transportation network (also called flow network) is:

a directed graph G = (V ,A);
two nodes s ∈ V (the source) and t ∈ V (the sink);
the capacities of the arcs c : A→ R+.

Definition

A feasible flow is a function f from A to R+ such that
for every arc a ∈ A, f (a) ∈ [0, c(a)] (capacity constraint)
for every node v ∈ V except s and t,∑
a∈γ−(v)

f (a) =
∑

a∈γ+(v)

f (a) (conservation constraint)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Remark

Theorem
If f is a feasible flow, then, for every subset of node V ′ ⊂ V \{s, t},
the conservation constraint is satisfied:∑
a∈γ−(V ′)

f (a) =
∑

a∈γ+(V ′)

f (a).

(see the board for an example)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Problem formulation

Definition
The value v of the flow f is the flow entering the sink t, or the flow
outgoing from the source s.

v =
∑

a∈γ−(t)

f (a)−
∑

a∈γ+(t)

f (a)

v =
∑

a∈γ+(s)

f (a)−
∑

a∈γ−(s)

f (a)

s tv
f1
f2
f3

v
f4
f5
f6

v = f1 + f2 − f3 = f4 − f5 − f6
6
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Problem formulation

The maximum flow problem

Input : a flow network (G , s, t, c).
Feasible solution : a feasible flow f on G (satisfies the capacity
constraint and the conservation constraint)
Optimal solution : a feasible solution f maximizing its value v .

7
Dimitri Watel MRO Chap 03 max flow



The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Remark

We can add a fictive arc from t to s such that the flow f (t, s)
always equals the value v of the flow f . In that case, the

conservation constraint is also satisfied by s and t.

s t

f1
f2
f3

f4
f5
f6

v

v + f3 = f1 + f2
v + f5 + f6 = f4
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The nul flow
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16]
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[0/12]

[0/10][0/4]

[0/14]
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[0/
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[0
/9

]

[0/20]

0

The nul flow is feasible.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Improve the flow through a path
If we add α to every arc on a path from s to t, the value of the

flow is increased by α.

s

T

N

Y

E

t

[0+
4/1

6]

[0/13]

[0+4/12]

[0/10][0/4]

[0+4/14]

[0/7]

[0+
4/4

]
[0
+
4/

9]

[0/20]

0+4

Add 4 to the flow.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Improve the flow through a path

s

T

N

Y

E

t

[4/
16]

[0/13]

[4/12]

[0/10][0/4]

[4/14]

[0/7]

[4/
4]

[4
/9

]

[0/20]

4

To be continued ... on board
11

Dimitri Watel MRO Chap 03 max flow



The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Improve the flow through a path

s

T

N

Y

E

t

[15
/16

]

[4/13]

[12/12]

[7/10][4/4]

[11/14]

[7/7]

[4/
4]

[4
/9

]

[15/20]

19

We are now stuck...
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Complete flow

Definition
We say a flow f is complete if, in G , every path from s to t
contains a saturated arc a, i.e. f (a) = c(a).

WARNING
A complete flow is not necessarily a maximum flow.

Proof : according to the flow at the beggining of the course, the
maximum flow is at least 23.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Improve the flow through a path

s

T

N

Y

E

t

[15
/16

]

[4/13]

[12/12]

[7/10][4/4]

[11/14]

[7/7]

[4/
4]

[4
/9

]

[15/20]

19

Idea : add 4 to (s,N) and (Y , t), and remove 4 to (Y ,N). How to
generalize this idea?
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Augmenting path

Définition
Considering a network (G , s, t, c) and a feasible flot f , an
augmenting path µ is an (undirected) path linking s and t such
that:

for every arc a of µ directed from s to t (the right direction),
f (a) < c(a). We write a ∈ µ+.
for every arc a of µ directed from t to s (the wrong direction),
f (a) > 0. We write a ∈ µ−.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Augmenting path

s

T

N

Y

E

t

[15
/16

]

[4/13]

[12/12]

[7/10][4/4]

[11/14]

[7/7]

4/[
4]

[4
/9

]

[15/20]

19

µ+ = {(s,N); (Y , t)};µ− = {(Y ,N)}
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Augmenting path

Définition
Considering a network (G , s, t, c) and a feasible flot f , an
augmenting path µ is an (undirected) path from s to t such that:

for every arc a of µ directed from s to t (the right direction),
f (a) < c(a). We write a ∈ µ+.
for every arc a of µ directed from t to s (the wrong direction),
f (a) > 0. We write a ∈ µ−.

Such a path may increase the value of the flow by at least

v → v +min

(
min
a∈µ+
{c(a)− f (a)}; min

a∈µ−
{f (a)}

)
(We add flow to the arc on the right direction, and we remove flow
from the arc on the wrong direction.)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Augmenting path

s

T

N

Y

E

t

[15
/16

]

[4+4/13]

[12/12]

[7/10][4/4]

[11/14]

[7/7]

[4/
4]

[4
-4

/9
]

[15+4/20]

19+4

min

(
min
a∈µ+
{c(a)− f (a)}; min

a∈µ−
{f (a)}

)
= 4
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Augmenting path

s

T

N

Y

E

t

[15
/16

]

[8/13]

[12/12]

[7/10][4/4]

[11/14]

[7/7]

[4/
4]

[0
/9

]

[19/20]

23

No more augmenting path. The flow is maximum.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

How to find a maximum flow?

Theorem
Given a flow network and a feasible flow, there is no augmenting
path if and only if the flow is maximum.

Proof : later. We need stronger tools.
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Dimitri Watel MRO Chap 03 max flow



The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The Ford-Fulkerson algorithm : basis

Let (G , s, t, c) be a flow network
Let f be a nul flow on G

While there exists an augmenting path µ on f do

dv ← min

(
min
a∈µ+
{c(a)− f (a)}; min

a∈µ−
{f (a)}

)
∀a ∈ µ+, f (a)← f (a) + dv
∀a ∈ µ−, f (a)← f (a)− dv

Return f
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Find an augmenting path

1st version : the residual network

Definition
Let (G , s, t, c) be a flow network and a feasible flow f . We define
the residual network as a graph H = (V ,B) and a weight
ω : B → N over the arcs of H such that :

for every arc a = (u, v) ∈ A such that f (a) < c(a), we add an
arc b = (u, v) ∈ B , and the weight of b is ω(b) = c(a)− f (a)

for every arc a = (u, v) ∈ A such that f (a) > 0, we add an arc
b = (v , u) ∈ B , and the weight of b is ω(b) = f (a)

(See the board for an example)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Find an augmenting path

1st version : the residual network

Lemma
There is an augmenting path in G if and only if there is a path in
H from s to t.

(See the board for a proof and an example)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Find an augmenting path

2nd version : marking algorithm
1 Mark the source s with ” + ”
2 For every arc (u, v) ∈ A do

If u is marked, v is not marked and f (u, v) < c(u, v), then
mark v with ” + (u)”
If v is marked, u is not marked and f (u, v) > 0, then mark u
with ”− (v)”

3 Restart 2 if at least one node was marked.
(See the board for an example)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Find an augmenting path

2nd version : marking algorithm

Lemma
There is an augmenting path in G if and only if t is marked.

In that case, in order to build the path, we have to follow the
markings backward from t.

(See the board for a proof and an example)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The minimum-cut problem

Definition
Let (G = (V ,A), s, t, c) be a flow network. A cut that separates
the source and sink, or s-t cut, is a partition of V into two subsets
S ⊎ T = V such that s ∈ S and t ∈ T .
The weight of the cut is c(S ,T ) =

∑
u∈S

∑
v∈T

c(u, v).

The weight of an s-t cut is the sum of the capacities of the
arcs entering T (similarly, the arcs leaving S)
Removing those arcs cut every directed path from s to t.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The minimum-cut problem

The minimum-cut problem

Input : a flow network (G , s, t, c).
Feasible solution: a cut (S ,T ) that separates s from t

Optimal solution: a minimum weight s-t cut.
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How to find a maximum flow?
The Ford-Fulkerson algorithm
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Examples

s

T
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E

t

[16
]

[13]

[12]

[14]
[9
]

[4]

[20]

[10][4] [7]

(S is bold, T is dashed)
Weight c(S ,T ) : 12+14=26
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The problem
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How to find a maximum flow?
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Minimum-cut

Examples

s

T
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Y

E

t

[16
]

[13]

[12]

[14]
[9
]

[4]

[20]

[10][4] [7]

(S is bold, T is dashed)
Weight c(S ,T ) : 13+16=29
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Examples

s

T

N

Y

E

t

[16
]

[13]

[12]

[14]
[9
]

[4]

[20]

[10][4] [7]

(S is bold, T is dashed)
Weight c(S ,T ) : 13+16+9+20+4=62
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The (weak) max-flow-min-cut theorem

Theorem
Let (G , s, t, c) be a flow network, f be a feasible flow on G of value
v , and (S ,T ) be an s − t cut, then c(S ,T ) ≥ v .

Proof : the flow entering t is no more than the flow entering T .
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

The (strong) max-flow-min-cut theorem

Theorem
Let (G , s, t, c) be a flow network, f be a maximum on G of value
v , and (S ,T ) be a minimum s − t cut, then c(S ,T ) = v .

The proof shows also this theorem :

Theorem
Given a flow network and a feasible flow, there is no augmenting
path if and only if the flow is maximum.

(Proof on board)
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Compute a minimum cut

When the Ford-Fulkerson algorithm stops, 1st version.
We proved that, in that case, there is no path from s to t in
the residual network H.
Let S be the set of nodes x such that there is a path from s to
x in H, and let T be the other nodes.
(S ,T ) is a minimum cut.
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The problem
Problem formulation

How to find a maximum flow?
The Ford-Fulkerson algorithm

Minimum-cut

Compute a minimum cut

When the Ford-Fulkerson algorithm stops, 2nd version.
In that case, we proved that t is not marked.
Let S be the set of marked nodes and let T be the other
nodes.
(S ,T ) is a minimum s − t cut.
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