The maximum flow problem

Recherche opérationnelle
Dimitri Watel - ENSITE

2024

The maximum flow problem is a classic problem in
operations research aimed at modeling an optimal move-
ment issue in a graph. The applications are numerous,
the most traditional being a fluid network (gas, liquid),
from which the problem derives its name, as well as a
transportation network, an energy network, or a telecom-
munications network. We will describe the problem, ex-
plain how it can be solved, and demonstrate the correct-
ness of the proposed algorithm.

1 Problem definition

In the following graph G, where a source s and a sink
t have been identified, each arc a is associated with an
integer c(a). These integers represent the capacities of
the arcs. We refer to this as a flow network or transport
network (G, s,t,c).

We aim to transport water from s to ¢ by following the
edges of the graph, knowing that

e the amount of water entering a node must be equal
to the amount exiting the node, except at s and ¢,

e the amount of water flowing through an edge cannot
exceed the capacity of that edge.

In the previous example, the following solutions are
feasible.

More formally, a feasible flow is a function f from A
to N such that

o for every arc a € A, f(a) € [0,¢(a)] (capacity con-
straint)

e for every node v € V except s and ¢,

> fla) = > f(a) (conservation con-
a€y~ (v) aevt(v)
straint)

Among the two solutions of the example, the first one
is more interesting; we observe that the outgoing flow
from s is greater, and thus, we were able to send more
flow from s to t. We call the value the quantity of flow
outgoing from s (or equivalently, the quantity incoming
to t). Note that there is nothing preventing the flow from
looping back and returning to s; in this case, this flow
will exit s a second time, but it should not be counted
twice in the value. Thus, we define the value v of a flow
f with

v="Y flag- > fla)

agy—(t) aevyt(t)
v="> flo-) [
acyt(s) acy~(s)

The maximum flow problem is described as follows:

Problem 1. Given a flow network (G, s,t, ¢), find a feasi-
ble flow f of maximum value v in this network.

A flow that maximizes v is said to be optimal or max-
imum.

Before addressing the problem, we can simplify the
problem. We notice that the conservation constraint does
not involve s and t, but that the flow out of s is equal to
the flow into t. By adding a dummy arc between s and
t with a flow equal to v, we obtain an feasible flow that
satisfies the conservation constraint on all nodes.

2 The Ford Fulkerson algorithm

2.1 Main idea

The Fold Fulkerson algorithm injects flow into the net-
work gradually until it finds a maximum flow. The algo-
rithm starts with an already feasible flow. The simplest
solution is to start from zero flow.

The algorithm searches for an augmenting path. This is
a path in G connecting s and ¢ along which we can inject
flow. A simple example of an augmenting path is a path
from s to ¢t where each edge is not saturated (in the sense
that the associated flow has not reached its capacity). In
the following example, there is an augmenting path with
which the flow increases by 4.

However, this simple version of augmenting paths has
its limits. In the example with value 19 at the end of
the first section, there is no such path. However, there
is a solution with a value of 23 (as indicated in one of
the previous examples). The Ford-Fulkerson algorithm
is able to overcome this difficulty and find the maximum
flow by using a more generalized version of augmenting
paths.

Considering a network (G, s,t, ¢) and a feasible flot f,
an augmenting path p is an (undirected) path linking
s and t such that:

e for every arc a of p directed from s to ¢, f(a) < ¢(a).
We write u™ those arcs.

e for every arc a of pu directed from ¢ to s, f(a) > 0.
We write = those arcs.

In the following example, we have represented the
chain sNYt (it can be noted that the chain does not
take orientation into account). The arcs sN and Yt go
from s to ¢, and these arcs are not saturated. The arc
Y N goes from t to s, and this arc is not empty. Thus,
we indeed have an augmenting chain.

Once we have an augmenting path, we can increase the
flow value by increasing f(a) if a € y™ and by decreas-
ing f(a) if @ € p~. The change must be the same across
all edges, which ensures that we respect the conservation
constraint. We also need to respect the capacity con-
straint, meaning that no edge should exceed its capacity
or have a negative flow after the change.

The Ford Fulkerson algorithm is the following:

Algorithm 1 Ford Fulkerson algorithm

Require: (G, s,t,c) a flow network
f <+ anul flow
while il existe une chaine augmentante p dans G
dothere exists an augmenting path p on f

dv « min (argiﬁ {c(a) — f(a)}; 5233 {f (a)}>

Va € ut, f(a) + f(a)+ dv
Va € p~, f(a) < f(a) —dv

2.2 Find an augmenting path

There are two possible methods: the residual network
and the marking algorithm.

Let (G, s,t,c) be a flow network and a feasible flow f.
We define the residual network as a graph H = (V, B)
and a weight w : B — N over the arcs of H such that :

e for every arc a = (u,v) € A such that f(a) < c¢(a),
we add an arc b = (u,v) € B

e for every arc a = (u,v) € A such that f(a) > 0, we
add an arc b= (v,u) € B

Lemma 2.1. There is an augmenting path in G if and
only if there is a path in H from s to t.

Proof. Let P be a path connecting s and ¢ in G. We
denote w; as the i-th vertex of P, with s = wy.

P is an augmenting path
< for every i € [0,|P| — 1]

either (w;, w;4+1) is an unsaturated arc of G, or
(wiy1,w;) is a non-empty arc of G

& for every i € [0, |P| — 1], (w;, w;41) is an arc of H
& Pis apath in H

The marking algorithm is the following

Algorithm 2 Marking algorithm
Mark the source with +
for (u,v) € A do
if wis marked, v is not marked and f(u,v) < ¢(u,v)
then
mark v with +(u)
else if v is marked, u is not marked and f(u,v) >
0, then
mark u with —(v)

Redo Line 2 if at least one node was marked

Lemma 2.2. There is an augmenting path in G if and
only if t is marked.

Proof. Except for s, each marked node is marked with
another node from G that has itself been marked in a
previous iteration. Thus, by tracing back the markings,
one always arrives at s. Let us suppose that t is marked
and denote P = (s = wo, w1, ws,...,t = w)p|) as the
sequence of marked nodes that led to the marking of ¢.

For all ¢ € [0,|P| — 1], since w;4+1 has been marked
with either +w; or —w;,

(w;, w;41) is an unsaturated edge of G, or
(wit1,w;) is a non-empty edge of G

Therefore, P is an augmenting path.

If P = (s=wo,wi,ws,...,t=wp|) is an augmenting
path. We will show by induction that each node in P is
marked. wq is marked in the first line of the algorithm.
Now suppose that w; is marked by the algorithm during
some iteration. We focus on the execution of the loop in
line 2 that follows this marking. If, during this execu-
tion, w;y; is already marked (by some node other than
w;), then we have proven the desired induction property.
Otherwise, since P is an augmenting path,

(w;, w;+1) is an unsaturated edge of G, or
(wit1,w;) is a non-empty edge of G

Depending on the case, it is possible to mark w;4;
with either +w; or —w;. Thus, w;y; will necessarily be
marked no later than during the iteration of the loop in
line 2 where v and v are the nodes w; and w;+;. By
induction, all nodes in P are marked, particularly ¢t. [

The last section proves that the Ford-Fulkerson algo-
rithm is correct by showing that, if there are no more
augmenting paths, then the flow is maximal.

3 The min-cut problem and the
strong duality theorem

We will focus on a related problem, a dual problem of the
maximum flow problem, to demonstrate the accuracy of
the algorithm. We are interested in cuts of the graph
that separate s and t. Such a cut is a partition of the
nodes into two sets (S,T) such that s € S and t € T.
Below is an example of a cut where the nodes in bold
correspond to S and the others to T. The two sets do
not need to be of the same size and may contain only s
or only t.

Given a cut, we are interested in the arcs going from
S to T (and only those). We then calculate the sum of
the capacities of these arcs. In the previous example,
these arcs are represented as dashed lines. For instance,
we note that (Y, N) is not counted because this arc goes
from T to S. The capacity of this cut is therefore 26.

Remark 1. ”Even if the dummy arc is added to the net-
work, it is never counted in the capacity of the cut be-
cause it necessarily connects T to S and not the other
way around.

The minimum cut problem is described as follows:

Problem 2. Given a flow network (G, s,t,¢), find a cut
(S,T) of minimum capacity in this network.

Such a cut is called a minimum cut.

Although different from the maximum flow problem,
we will demonstrate that the two problems are related:
we will show that the value of the optimal solutions in
the same flow network is the same in both problems. If
we know the value of a maximum flow, then we know
the capacity of a minimum cut and vice versa. To prove
this theorem, we will first demonstrate an intermediate
result.

Lemma 3.1. Given a flow network (G = (V, A), s,t,¢)

with the dummy arc (t,s) and W C V then
> fla= > fla).

acy— (W) acyt (W)

Remark 2. In other words, the conservation constraint

is satisfied on every subset of nodes.

Proof. Since the dummy arc is present, the conservation
constraint is satisfied by every node of W.

Y flay=) fla)Vwew

a€y~ (v) acyt(v)

X =3 Y f@

veEW aevy— (v) veW aevt(v)

Let’s consider an arc a = (vy,v2) € A. If v; and vy are
in W, then this arc appears in both the left sum and the
right sum. If we simplify, on the left side only the arcs
(u,v) such that v &€ W remain, and on the right side only
the arcs (v, u) such that u ¢ W remain.

2. . Jww=3,)

VEW (u,v)ey (v) VEW (v,u)ey ™ (v)
Zw aw

> fla=
)

acy— (W acyt (W

fv,u)

f(a)
)

O

We can now demonstrate a weak version of the theorem
we would like to prove.

Theorem 3.1. Given a flow network (G =
(V,A),s,t,c), an admissible flow f of value v, and
a cut (S,T) of capacity ¢(S,T), then v < ¢(S,T).

Proof. By Lemma 3.1,

Yo flay= > fla)

a€y=(S) aeyt(S)

One of the arcs entering S is the dummy arc (¢, s), with
flow v. Since all the other arcs in v~ (S) have positive
flow, we have

Since every arc has a flow lower than its capacity

v < Z c(a)

a€yt(S)

Finally, since every output arc of S goes toward T, the
last sum is the capacity of the cut.

v<c(S,T)
O

If, given a flow, we find a cut whose capacity is equal
to the value of the flow, then this flow is necessarily max-
imum (and the cut is minimum). We will show that this
is always possible and that, starting from the flow result-
ing from the Ford Fulkerson algorithm, we can construct
this cut quite simply.

Theorem 3.2. Given a flow network

G =

To conclude this section, let us just focus on the

(V,A),s,t,c), the value v of a mazimum flow, and method described in the proof of Theorem 3.3 to find

the capacity C of a minimul cut, then v = C.

Theorem 3.3. The Ford Fulkerson algorithm returns a
mazximum flow.

Proof. The proof of the two theorems is done jointly.
Let us consider the flow f of value v returned at the
end of the algorithm. By construction, the flow network
with f no longer has an augmenting path. According
to Lemma 2.2, if we apply the labeling algorithm, the
node t is not labeled. Since the node s is still labeled,
we obtain a cut (S,T) by putting all labeled nodes in S
and the others in T
By Lemma 3.1,

Y fla= > fla)

ac€y~(S) aeyt(S)

One of the arcs entering S is the dummy arc (¢, s), with
flow v. All the other arcs in v~ (S) are arcs (u,v) where
uw € T and v € S. Since v is marked and v is not, it
follows that f(u,v) = 0 (otherwise, u would have been
marked with 7 — v”).

f(a)

a€yt(9)

v =

All the arcs in v (S) are arcs (u,v) where u € S and
v € T. Since u is marked and v is not, it follows that
flu,v) = c(u,v) (otherwise, v would have been marked
with 7 + u”).

v = Z c(a)

a€yt(S)

Finally, since every output arc of S goes toward T, the
last sum is the capacity of the cut.

v=c(S,T)

According to theorem 3.1, any flow has a value less
than ¢(S,T), therefore less than v. Similarly, every
cut has a capacity greater than v which is greater than
¢(S,T). We can thus conclude that the flow f returned
by the Ford Fulkerson algorithm is a maximum flow and
that (S,T) is a minimum cut. O

a minimum cut:

Algorithm 3 Find a minimum cut

Run the Ford Fulkerson algorithm

Version 1

After the last iteration, use the marking algorithm
S < the marked nodes

T < the other nodes

return (5,7

Version 2

After the last iteration, build the residual network H
S < the nodes that can be accessed from s in H
T < the other nodes

return (5,7

	Problem definition
	The Ford Fulkerson algorithm
	Main idea
	Find an augmenting path

	The min-cut problem and the strong duality theorem

