Branch and Bound

Recherche opérationnelle
Dimitri Watel - ENSITE

2024

The Branch and Bound method is a method for con-
structing an exact algorithm to solve a combinatorial
optimization problem. The idea is to use a complete
enumeration algorithm in a tree-like structure to which
additional information is added to avoid enumerating all
the solutions.

1 Examples

In this section, we will describe the method through two
examples. The next section will synthesize these ex-
amples and detail the algorithms. The two examples
provided here are graph problems, but of course, the
technique can be applied to any combinatorial problem
(where the decision is discrete).

1.1 The maximum independent set prob-
lem

An independent set in a graph G = (V, E) is a subset of
nodes V/ C V such that no two nodes in V'’ are connected
by an edge from E.

Problem 1. The maximum stable problem consists, given
a graph G = (V, E), in the search for an independent set
V' of G such that the size |V’| is maximized.

This problem can be solved fairly simply by testing all
possible subsets V’. One way to generate these subsets
is to use a tree representation of the solutions, which is
the branching step. Consider the following example:

A tree would be the following, where at each internal
node of the tree, a decision is made to include or not in-
clude one of the vertices of the graph in V’. Each branch
of the tree connecting the root to a leaf is a solution.
This solution may be infeasible (as is the case with the

left branch). An optimal solution can then be extracted
from the tree by looking at, among the feasible solutions,
those that maximize the number of nodes in V'.

The goal of a branch and bound algorithm is to not
explore, construct, or store the entire tree by cutting
branches that do not lead to an optimal solution. There
are two methods for cutting a branch.

e The first consists of revealing unfeasible decisions.
For example, here, any leaf whose branch starts with
Ko and Z is unfeasible because no independent set
contains these two nodes.

e A second idea is to look at the weight of the best
solution and the weight of the current solution. If
we explore the tree by going deep to the left, the
first solution we will reveal is Ko, Z,N,U, Ka, S.
We thus have a solution with 3 nodes. Now con-
sider the branch Ko, Z, N, which includes all solu-
tions containing Z and excluding both Ko and N.
Regardless of the choices made for U, Ka, and S,
we can never have more than 3 vertices in the in-
dependent set. Indeed, Z prevents the selection of
S, so this stable will contain, at best, Z, U, and
Ka. Since we have already found a solution with 3
nodes, it is unnecessary to explore the solutions aris-
ing from the choices Ko,Z, N (we remind that we
seek an optimal solution, not all optimal solutions).

As an example, consider another branch, the branch
Ko and Z. At best, any realizable solution arising

from this decision can contain only 4 vertices. In-
deed, the vertices Ko and Z are not selected. Thus,
there are 4 remaining vertices that we can hope to
include in a realizable solution. If we have already
found a solution with 4 vertices or more, there is
no need to explore this branch further. Note with
this example that this value of 4 is an upper bound.
There is no solution of size 4 that does not include
Ko or Z. Indeed, U and S are incompatible. Thus,
we are dealing with an upper bound for the best pos-
sible solution and not the value of the best possible
solution. The only way to know this latter value is
to explore all the nodes descending from the branch.

By combining these two ideas, we obtain the follow-
ing explored tree where the upper bound is indicated
next to the node. The dotted nodes represent non
feasible decisions.

We do find the optimal solution, but we explored many
fewer nodes. We cut 4 branches because the solution
was not feasible. We cut 6 branches because the upper
bound indicated that we would not do better than the
best solution. And we revealed two feasible solutions,
with values of 3 and 4, respectively.

Here we performed a depth-first search to the left. We
explored 13 nodes (the nodes that were not pruned). We
could have done a depth-first search to the right, or a
random depth-first search. The result would have been
the same but the number of pruned and explored nodes
would have been different. In the worst case, we are
forced to reveal the entire tree. In the best case, we
directly hit the optimal solution, and if the bounds are
low, we prune all other nodes.

We will describe below another example using a differ-
ent exploration method.

1.2 The maximum weighted selection
problem

We consider a relaxed variant of the maximum indepen-
dent set problem. We can now take two nodes in V' that
are neighbors, but this incurs a penalty.

Problem 2. The maximum weight selection problem con-
sists, given a graph G = (V, E) and weights w : V — R,

of finding a subset V/ C V that maximizes Y w(v)—
veV’
|E[V']|, where E[V'] are the edges of the subgraph in-

duced by V'.

We can still solve this problem fairly simply by testing
all possible subsets V'’ with a tree exploration. We can
use the branch and bound technique, but we need a new
upper bound.

Consider the following example where w(v) is written
next to the node v.

Suppose we have already made a decision for some
nodes, let W+ be the nodes that we have decided will be
in V' and W~ those that we have decided will not be in
V’. We still need to make a decision for the others. We
can already count the value that these nodes bring:

b Y w(v) — [EWH

veEW+

For example, consider above that W+ = {K,} and
W~ =0, then b starts with 1.5.

We then calculate, for each node v € VA\WTUW ™, the
following value. It corresponds to the gains and penalties
that relate v and WT. If this value is positive, we add it
to b. Otherwise, we do nothing; we then consider that it
is better not to add v to V’. This is the case, for example,
if v introduces a lot of penalties.

¢y +— w(v) — |{(u,v) € Elu € Wt}
b < b+ max(c,,0)

In our example, ¢z = 2,cy = l,cy = 2,¢xq = —3
and cg = 2. Therefore, we have b = 8.5 at the end of
the calculation. Once again, we are indeed talking about
the upper bound of the best solution containing W and
not the optimal value among these solutions. There is
no solution containing K, with a weight of 8.5, but all
these solutions have a weight less than 8.5. If we find

a solution with a value greater than 8.5, we know it is
unnecessary to explore the branch starting at K.

Unlike the first example where we explored the tree
deeply to the left, we will use a best-first search here,
always exploring the node with the greatest bound in
the tree.

The order in which the nodes were explored is indi-
cated below. We explored 8 nodes and cut 7 nodes.

2 Summary

The branch and bound method is a method for construct-
ing an exact algorithm for a combinatorial optimization
problem.

The first step is to separate the problem into sev-
eral subproblems. Generally, this branching is done
by making a decision for one of the problem variables
(in our examples, selecting or not selecting a node), but
more general approaches can be taken depending on the
problem we wish to solve.

Let II be an optimization problem for which the set of
feasible solutions is £(IT). We say the function S(IT) di-
vide IT into subproblems if it returns a set of optimization
problems (IIy, Iy, .. .II,) such that

Jean) = ¢m

It is necessary, as far as possible, that the solutions of
the subproblems intersect as little as possible to reduce
the unnecessary search space. In the examples above, we
have II corresponding to the root node of the tree and
111, II5 corresponding to the nodes K, and K,.

The second step is to choose a bound from the set
of values of all solutions. In our two examples, we had a
maximization problem. In this case, an upper bound is
needed. Note, in the case of a minimization problem, a
lower bound is required.

Let II be a minimization problem. Let w(s) be the
value of a feasible solution s of £(IT). Finally, let s* be
an optimal solution of II (minimizing w(s*)).

A bound B(II) is a number that can be computed
fast satisfying

B(II) < w(s*)

In the case of a maximization problem, we will have
B(II) > w(s*). We recall that each problem can be di-
vided into subproblems which themselves are optimiza-
tion problems to which we can apply the bound B.

As mentioned above, the bound must be quick to cal-
culate, as we will need to compute it for every node of
the tree that we will reveal. However, the bound must
also be effective; the closer it is to w(s*), the more likely
we are to prune the current node. For example, in the
maximum stable set problem, a very quick bound to cal-
culate is |V]. This is indeed an upper bound of a stable
set of G, but it is not a very useful bound since no node
will be pruned due to this bound. Conversely, the best
bound would be to calculate and return w(s*), but that
would take a long time (possibly exponential time for
each node of the tree).

The last step is to determine an exploration strat-
egy. Given a partially revealed tree, which node should
be explored? An important detail is to clearly define the
notion of exploration.

Definition 1. FExploring a node II of the tree means
compute S(IT) and B(r) for all 7 € S(II).

It is not because a node is displayed that it is ex-
plored. A node can be pruned because its bound is too
small/large or because it corresponds to an infeasible so-
lution. In this case, it is considered unexplored: its chil-
dren S(II) in the tree are not revealed. The calculation
of the bound of the node is not part of the exploration;
it is part of the exploration of the parent node. The only
exception is the root, which has no parent. However, the
calculation of the bound of the root is rarely useful.

As we have seen, there are two simple exploration
techniques, leftmost depth-first exploration which

always explores the leftmost unexplored node, and best-
first exploration which always explores the unexplored
node with the most promising bound. The first is less
memory-intensive and quickly finds feasible solutions.
The second immediately finds very good solutions but
takes more time and memory to achieve them. Of course,
one should not limit oneself to these techniques. Depend-
ing on the problem and the instance, one must choose
the right technique. It is also possible to change tactics
during the algorithm; there are no strict rules.

We end by giving pseudocode algorithms for the two
standard exploration techniques.

Algorithm 1 Depth first search exploration

Require: a minimization problem II, and a real uB >
w(s*). The default value of uB is 4o0.
Ensure: The weight w(s*) of an optimal solution s* of
I
1: function BB(II, uB)
2: if II cannot be separated then return The
weight w(s*) of an optimal solution s* of II

Explore 11
for IT; € S(IT) such that £(I1;) # 0 do
b+ B(IL;)
if b < ub then
w + BB(I1;, ub)
ub < min(ub,w)

© ® TP Rw

return uB

Algorithm 2 Best first search exploration

Require: a minimization problem II

Ensure: The weight w(s*) of an optimal solution s* of
II

1: function BB(II)

2: L+ I ; uB + 400

3: while L # () do

4: T 4— arg %E(B(w)) ; Remove 7 from L
5: if B(m) > ub then

6: Break

7 if 7 cannot be separated then

8: ub = min(ub, Weight w(s*) of an opt sol

s* of m)

9: else
10: Explore 11
11: Add all elements of S(IT) to L

12: return uB

	Examples
	The maximum independent set problem
	The maximum weighted selection problem

	Summary

