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Projected gradient algorithm
Reduced gradient algorithm

Problems MIDA

Minimum Intersecting Disks Area
Let p1, p2, . . . , pn, q be points in 2D space, build for each point pi a
disk Di centered at pi such that

∀i < n,Di ∩ Di+1 ̸= ∅

q ∈ Dn

and such that the sum of the areas of the disks is minimum.
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Projected gradient algorithm
Reduced gradient algorithm

Modelization : MIDA

Let dij the distance between pi and pj ; dn the distance between pn
and q.

min
n∑

i=1

r2
i

s.c . ri + ri+1 ≥ di ∀ 1 ≤ i < n

rn ≥ dn

����(ri ≥ 0) ∀ 1 ≤ i ≤ n

If r is a solution with ri < 0 we can safely replace ri by −ri and get
a solution with the same objective value.
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Projected gradient algorithm
Reduced gradient algorithm

Karush-Kuhn-Tucker conditions
Let f , gi , hj : Rn → R, ∀ i ∈ J1;mK, ∀ j ∈ J1; pK of class C 1.
We want to solve

min f (x)

s.c . gi (x) ≤ 0 ∀ i ∈ J1;mK
hj(x) = 0 ∀ j ∈ J1; pK

We write S the set of feasible solutions.

Karush-Kuhn-Tucker conditions
x ∈ S satisfies the Karush-Kuhn-Tucker conditions (KKT) if:

∃λi ≥ 0, µj ∈ R ∀ i ∈ J1;mK, j ∈ J1; pK

∇f (x) +
m∑
i=1

λi∇gi (x) +
p∑

j=1

µj∇hj(x) = 0

λi · gi (x) = 0 ∀ i ∈ J1;mK
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Projected gradient algorithm
Reduced gradient algorithm

Reminder : qualification

Let x ∈ S . We write the saturated constraints

I (x) = {i ∈ J1;mK|gi (x) = 0}

Linear independance qualification
x satisfies the linear independance qualification if the vectors
(∇gi (x), i ∈ I (x∗) ∪ (∇hj(x), j ∈ J1; pK) are linearly independant.

Remark: there exists a more general definition of qualification, but
we will not use it.
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Projected gradient algorithm
Reduced gradient algorithm

Reminder : necessary and sufficient optimality conditions

(KKT) necessary conditions

If x∗ ∈ S is a local minimum of f and if x∗ is qualified then x∗

satisfies (KKT).

(KKT) sufficient conditions

If x∗ satisfies (KKT), if the functions f et gi are convex and if the
functions hj are linear, then x∗ is a global minimum.
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Projected gradient algorithm
Reduced gradient algorithm

Qualification for MIDA

MIDA : Every point satisfies the linear independance qualification.

⇒ Every global optimum satisfies (KKT).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient algorithm
We want to solve

min f (x)

s.c. gi (x) ≤ 0 ∀ 1 ≤ i ≤ m

hj(x) = 0 ∀ 1 ≤ j ≤ p

where gi and hj are linear and every point satisfies the linear
independance qualification.

Informal presentation of the algorithm
The projected gradient algorithm is a gradient descent that does
not go out of S . To do so, when we touch the boundary of S , we
do not follow the gradient but a projection of the gradient on the
boundary.
It stops when the (KKT) conditions are satisfied.
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

Arrows are the gradient. The poly-
gon is S .
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

The objective function is (x1− c1)
2 +

(x2 − c2)
2 : get as close as possible

to ✠ = (c1, c2).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 1 : find a feasible solution x .
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 2 : watch the opposite of the
gradient −∇f (x).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 3 : we can follow that direc-
tion, go to the minimum but do not
go out of S . Then start again.
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 2 : watch the opposite of the
gradient −∇f (x).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 3 : it is not possible to follow
that direction without going out
of S . We project −∇f (x) on the
boundary of S .
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 4 : go to the minimum in that
direction, but do not go out of S .
And start again.
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 2 : watch the opposite of the
gradient −∇f (x).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 3 : it is not possible to follow
that direction without going out
of S . We project −∇f (x) on the
boundary of S .
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 4 : We need to project on 2
non-colinear borders ⇒ which border
do we choose ?
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 4 : Project on the border for
which the projection goes toward a
lower value of the objective.
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 5 : go to the minimum in that
direction, but do not go out of S .
And start again.
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 2 : watch the opposite of the
gradient −∇f (x).
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Projected gradient algorithm
Reduced gradient algorithm

Projected gradient : overall idea

✠

Step 3 : The gradient is orthogonal
to the boundary, we stop.
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Projected gradient algorithm
Reduced gradient algorithm

Drawing → formulas.
We remind that gi and hj are linear:

gi (x) =
n∑

k=1

(aikxk)− bi ≤ 0 ∀i ∈ J1;mK

hj(x) =
n∑

k=1

(a′jkxk)− b′j = 0 ∀j ∈ J1; pK

We write

A =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

a′11 a′12 · · · a′1n
a′21 a′22 · · · a′2n
...

...
...

...
a′p1 a′p2 · · · a′pn


B =



b1
b2
...
bm
b′1
b′2
...
b′p


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Projected gradient algorithm
Reduced gradient algorithm

Drawing → formulas.

Lemma
If Li is the i-th line of A, then

Li =
t∇(gi (x)) ∀i ∈ J1;mK

Lj+m = t∇(hj(x)) ∀j ∈ J1; pK
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Projected gradient algorithm
Reduced gradient algorithm

Detect if we are on the boundary

x touches the hyperplanes with equations hj(x) = 0 and gi (x) = 0.
We write

I (x) = {i |gi (x) = 0}

J = {j |hj(x) = 0} = J1; pK
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Projected gradient algorithm
Reduced gradient algorithm

Project the gradient on the boundary

d

Let As = {Li , i ∈ I (x) ∪ J}.

Lemma
The projected gradient d is

d = Projection of (−∇f (x)) on {y |Li · y = 0 ∀i ∈ I (x) ∪ J}
=

(
In − tAs · (As · tAs)

−1 · As

)
· (−∇f (x))
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Projected gradient algorithm
Reduced gradient algorithm

Remarks

As · tAs is always invertible due to the linear independance
qualification.

If I (x) = J = ∅ then, As = ∅. In that case, d = (−∇f (x)).
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Projected gradient algorithm
Reduced gradient algorithm

Translation in the direction d

x
d

x + α2 · d

We write

α1 = max
0≤α

(x + α · d ∈ S)

α2 = arg min
0≤α≤α1

(f (x + α · d))

Lemma

If d ̸= 0⃗ then α1, α2 ̸= 0.
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Projected gradient algorithm
Reduced gradient algorithm

Case d = 0⃗

Lemma

If d = 0⃗, then, there exists λi , for i ∈ I (x) and µj for j ∈ J such
that −∇f (x) =

∑
i∈I (x)

λi · Li +
∑
j∈J

µj · Lm+j .

Lemma (
λ
µ

)
= (As · tAs)

−1As · (−∇f (x))
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Projected gradient algorithm
Reduced gradient algorithm

Case d = 0⃗

Lemma
If, for every i ∈ I (x), λi ≥ 0 then, the (KKT) conditions are
satisfied.

Lemma
If there exists λi < 0, then we can remove i from I (x). We
compute again the projection d ′ like we did at slide 14.

d ′ ̸= 0⃗
∇gi (x) · d ′ < 0
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Projected gradient algorithm
Reduced gradient algorithm

The projected gradient algorithm

1: Find x ∈ S
2: I (x)← {i ∈ J1;mK|gi (x) = 0}
3: loop
4: As ← {Li , i ∈ I (x) ∪ J}
5: d ← (In − tAs · (As · tAs)

−1 · As) · (−∇f (x))
6: if d = 0 then
7: t(λ, µ)← (As · tAs)

−1As · (−∇f (x))
8: If ∃i ∈ I (x), λi < 0, Remove i from I (x)
9: Else return x

10: else
11: α1 ← max

0≤α
(x + α · d ∈ S)

12: α2 ← arg min
0≤α≤α1

(f (x + α · d))
13: x ← x + α2 · d
14: I (x)← {i ∈ J1;mK|gi (x) = 0}
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Projected gradient algorithm
Reduced gradient algorithm

Example
We consider the following MIDA instance
P = {p1, p2, p3} = {[0, 0], [0, 5], [5, 5]} and q = [5, 10].
We start from the solution r = (r1, r2, r3) = (5, 0, 5).

•

• •

•
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Projected gradient algorithm
Reduced gradient algorithm

Example

The formulation of the problem is

min r2
1 + r2

2 + r2
3

s.c . −r1 − r2 ≤ −5 (g1)

−r2 − r3 ≤ −5 (g2)

−r3 ≤ −5 (g3)

A =

−1 −1 0
0 −1 −1
0 0 −1

 B =

−5
−5
−5


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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

If r = (5, 0, 5) then I (r) = {1, 2, 3}.

As =

−1 −1 0
0 −1 −1
0 0 −1

 L1
L2
L3

As · tAs =

2 1 0
1 2 1
0 1 1


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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

t∇f (r) = (2r1, 2r2, 2r3) = (10, 0, 10)

d = (In−tAs ·(As ·tAs)
−1·As)·(−∇f (r)) =

0 0 0
0 0 0
0 0 0

·(−∇f (r)) = 0

Other method : we compute the projection of −∇f (r) on

L = {y |L1 · y = 0; L2 · y = 0; L3 · y = 0}
= {y | − y1 − y2 = 0;−y2 − y3 = 0;−y3 = 0}
= {y = 0}

The projection is then necessarily d = 0.
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

As =

−1 −1 0
0 −1 −1
0 0 −1

 L1
L2
L3(

λ
µ

)
=

λ1
λ2
λ3

 = (As · tAs)
−1 · As · (−∇f (r)) =

 10
−10
20


Other method :

−∇f (r) =

−10
0
−10

 = λ1L1+λ2L2+λ3L3 = 10

−1
−1
0

−10

 0
−1
−1

+20

 0
0
−1


λ2 < 0⇒ I (r)← I (r)\{2} = {1, 3}
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1.2

I (r) = {1, 3}.

As =

(
−1 −1 0
0 0 −1

)
L1
L3

As · tAs =

(
2 0
0 1

)
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1.2

t∇f (r) = (2r1, 2r2, 2r3) = (10, 0, 10)

d = (In−tAs ·(As ·tAs)
−1·As)·(−∇f (r)) =

 0.5 −0.5 0
−0.5 0.5 0

0 0 0

·
−10

0
−10

 =

−5
5
0


Other method : we compute the projection of −∇f (r) on

L = {y |L1 · y = 0; L3 · y = 0}
= {y | − y1 − y2 = 0;−y3 = 0}
= {y |y1 = −y2; y3 = 0}

The projection is then necessarily d = β · (1,−1, 0) knowing that

−∇f (r) · d = d2 ⇒ −10β = 2 · β2 ⇒ β = −5
25
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1, end

α1 = max
0≤α

(r + α · d ∈ S)

= max
0≤α

(

5− 5 · α
0 + 5 · α
5 + 0 · α

 ∈ S)

= max
0≤α

5− 5 · α+ 0 + 5 · α ≥ 5
0 + 5 · α+ 5 + 0 · α ≥ 5

5 + 0 · α ≥ 5


= max

0≤α

 5 ≥ 5
5 + 5 · α ≥ 5

5 ≥ 5


= +∞
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1, end

α2 = arg min
0≤α≤α1

(f (r + α · d))

= argmin
0≤α

(f (

5− 5 · α
0 + 5 · α
5 + 0 · α

))

= argmin
0≤α

((5− 5 · α)2 + (0 + 5 · α)2 + (5 + 0 · α)2)

= argmin
0≤α

(50− 25α+ 50α2)

=
1
2

We move to r + 1
2d =

2.5
2.5
5

.
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

If r = (2.5, 2.5, 5) then I (r) = {1, 3}.

As =

(
−1 −1 0
0 0 −1

)
L1
L3

As · tAs =

(
2 0
0 1

)
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

t∇f (r) = (2r1, 2r2, 2r3) = (5, 5, 10)

d = (In−tAs ·(As ·tAs)
−1·As)·(−∇f (r)) =

 0.5 −0.5 0
−0.5 0.5 0

0 0 0

·
 −5
−5
−10

 =

0
0
0


Other method : we compute the projection of −∇f (r) on

L = {y |L1 · y = 0; L3 · y = 0}
= {y | − y1 − y2 = 0;−y3 = 0}
= {y |y1 = −y2; y3 = 0}

The projection is then necessarily d = β · (1,−1, 0) knowing that

−∇f (r) · d = d2 ⇒ 0 = 2 · β2 ⇒ β = 0
29
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

As =

(
−1 −1 0
0 0 −1

)
L1
L2(

λ
µ

)
=

(
λ1
λ3

)
= (As · tAs)

−1 · As · (−∇f (r)) =
(

5
10

)
Other method :

−∇f (r) =

 −5
−5
−10

 = λ1L1 + λ3L3 = 5

−1
−1
0

+ 10

 0
0
−1


λ1, λ3 ≥ 0⇒ (KKT) satisfied. We return r∗ = (2.5, 2.5, 5) with
f (r∗) = 31.25.
Moreover, f is convex and the gi are convex thus linear,
consequently, the sufficient conditions of (KKT) show that r∗ is a
global minimum.
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Projected gradient algorithm
Reduced gradient algorithm

Reduced gradient algorithm

We want to solve

min f (x)

s.c . hj(x) = 0 ∀ 1 ≤ j ≤ p

xi ≥ 0 ∀ 1 ≤ i ≤ n

where hj are linear and p < n.

Informal presentation of the algorithm
The reduced gradient algorithm is a gradient descent that does not
go out of S . Because of the equalities, we can rewrite some of the
variables xB with the rest of the variables xN . We then reduce f (x)
and ∇f (x) to f (xN) and ∇f (xN)
It stops when the (KKT) conditions are satisfied.
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Projected gradient algorithm
Reduced gradient algorithm

Reminder

Augmented form

Let (P) be the following program

min f (x)

s.c. gi (x) ≤ 0 ∀ 1 ≤ i ≤ m

hj(x) = 0 ∀ 1 ≤ j ≤ p

then, there exists a program (P ′) equivalent to (P) with the
following form

min f (x)

s.c . hj(x) = 0 ∀ 1 ≤ j ≤ p

xi ≥ 0 ∀ 1 ≤ i ≤ n
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Projected gradient algorithm
Reduced gradient algorithm

Reminder : tricks

If gi (x) ≤ 0 then add a slack variable si ≥ 0 and set
hi (x) = gi (x) + si = 0.

If xi ∈ R then remplace xi by two variables x+i ≥ 0 and x−i ≥ 0 and
set xi = x+i + x−i .

If gi (x) = −xi ≤ 0 then do nothing.

If gi (x) = xi ≤ 0 then replace xi by −xi .

33
Dimitri Watel MRO Chap 05 Gradient, non linear opt.



Projected gradient algorithm
Reduced gradient algorithm

Reminder : slack variable and drawing

We assume b > 0

0
x1

x2

•
b/a1

•b/a2

a1 x1 +
a2 x2 =

b

(a1, a2)

a1x1 + a2x2 < b

a1x1 + a2x2 + s = b

•
x

≃
s

34
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Projected gradient algorithm
Reduced gradient algorithm

No drawing

We remind that hj are linear:

hj(x) =
n∑

k=1

(ajkxk)− bj = 0 ∀j ∈ J1; pK

We write

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
ap1 ap2 · · · apn

 b =


b1
b2
...
bp


We assume that rg(A) = p.
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Projected gradient algorithm
Reduced gradient algorithm

Basis and non basis

Let B ⊂ J1; nK of size p and N = J1; nK\B .
We write
AB = the columns of A for which the index is in B .
AN = the columns of A for which the index is in N.
xB = the variables of x for which the index is in B .
xN = the variables of x for which the index is in N.
∇fB = the coefficients of ∇f (x) for which the index is in B .
∇fN = the coefficients of ∇f (x) for which the index is in N.

We can rewrite A, x and ∇f (x) this way:

A =
(
AB AN

)
, x =

(
xB
xN

)
,∇f (x) =

(
∇fB
∇fN

)

36
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Projected gradient algorithm
Reduced gradient algorithm

Reduction, reduced gradient

Lemma
If AB is invertible, it is possible to rewrite f (x) with only xN with

xB = A−1
B · b − A−1

B · AN · xN

Let f̄ : Rn−p → R such that f̄ (xN) = f (xB , xN).

Lemma

The reduced gradient is the gradient of f̄ .

t∇f̄ (xN) = − t∇fB · A−1
B · AN + t∇fN

37
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Projected gradient algorithm
Reduced gradient algorithm

Direction to follow

Definition

Given ∇f̄ (xN), we define the direction d , divided in two parts, dB
and dN , this way

∀j ∈ N, dj =

{
0 if ∇f̄ (xN)j > 0 and xj = 0
−∇f̄ (xN)j otherwise

dB = −A−1
B · AN · dN

Lemma
For all α ∈ R, A · (x + α · d) = b.
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Projected gradient algorithm
Reduced gradient algorithm

Case d = 0⃗

Lemma

If d = 0⃗ then, the (KKT) conditions are satisfied.
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Projected gradient algorithm
Reduced gradient algorithm

Translation in the direction d ̸= 0⃗

As in the case of the projected gradient, we write

α1 = max
0≤α

(α|x + α · d ≥ 0)

α2 = arg min
0≤α≤α1

(f (x + α · d))

We move to
y = x + α2 · d

Remark
α1 may possibly be nul.
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Projected gradient algorithm
Reduced gradient algorithm

Change of basis

Lemma
If there exists s ∈ B such that ys = 0 ; and if we keep the basis for
the next iteration, then the next value of α1 may be 0 → we are
stuck.

Non-degeneration hypothesis
The hypothesis assumes that, whatever the basis B is, if AB is
invertible, then A−1

B · b > 0.

Lemma
If there exists s ∈ B such that ys = 0, then, under the
non-degeneration hypothesis, there exists r ∈ N such that yr ̸= 0
and AB∪{r}\{s} is invertible.
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Projected gradient algorithm
Reduced gradient algorithm

The reduced gradient algorithm

1: Find x ∈ S and B such that AB is invertible
2: loop
3: t∇f̄ (xN)← − t∇fB · A−1

B · AN + t∇fN
4: for j ∈ N do
5: If ∇f̄ (xN)j > 0 and xj = 0 then dj ← 0 else dj ← −∇f̄ (xN)j
6: dB ← −A−1

B ANdN
7: If d = 0 then return x
8: α1 ← max

0≤α
(x + α · d ≥ 0)

9: α2 ← arg min
0≤α≤α1

(f (x + α · d))
10: x ← x + α2 · d
11: if ∃s such that xs = 0 then
12: for r ∈ N by decreasing order of xr do
13: if AB∪{r}\{s} is invertible then
14: B ← B ∪ {r}\{s}
15: Restart the loop
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Projected gradient algorithm
Reduced gradient algorithm

Example

We consider the following MIDA instance
P = {p1, p2, p3} = {[0, 0], [0, 5], [5, 5]} and q = [5, 10].
We start from the solution r = (r1, r2, r3) = (5, 0, 10).

•

• •

•
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Projected gradient algorithm
Reduced gradient algorithm

Example
The formulation of the problem is

min r2
1 + r2

2 + r2
3

s.c . −r1 − r2 + s1 = −5 (h1)

−r2 − r3 + s2 = −5 (h2)

−r3 + s3 = −5 (h3)

A =

−1 −1 0 1 0 0
0 −1 −1 0 1 0
0 0 −1 0 0 1

 B =

−5
−5
−5


t∇f (x) = (2r1, 2r2, 2r3, 0, 0, 0)

r = (5, 0, 10)⇒ x = (5, 0, 10, 0, 5, 5)
We start from the basis B = (1, 3, 6) et N = (2, 4, 5).

44
Dimitri Watel MRO Chap 05 Gradient, non linear opt.



Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

AB =

−1 0 0
0 −1 0
0 −1 1


xB = (5, 10, 5)

t∇f B = (10, 20, 0)

AN =

−1 1 0
−1 0 1
0 0 0


xN = (0, 0, 5)

t∇f N = (0, 0, 0)

A−1
B =

−1 0 0
0 −1 0
0 −1 1


t∇f̄ (xN) = − t∇fB · A−1

B · AN + t∇fN
= (−30, 10, 20)
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

Other method: rewrite f as a function of
xN = (r2, s1, s2) = (0, 0, 5)

f (x) = r2
1 + r2

2 + r2
3

f̄ (xN) = (5 + s1 − r2)
2 + r2

2 + (5 + s2 − r2)
2

= 3r2
2 + s2

1 + s2
2 − 2r2s1 − 2r2s2 − 20r2 + 10s1 + 10s2 + 50

∇(f̄ )(xN) =

6r2 − 2s1 − 2s2 − 20
2s1 − 2r2 + 10
2s2 − 2r2 + 10

 =

−30
10
20

 r2
s1
s2
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

dN =

 30
0
−20

← ∇(f̄ )(xN)r2 ≤ 0, r2 = 0
← ∇(f̄ )(xN)s1 > 0, s1 = 0
← ∇(f̄ )(xN)s2 > 0, s2 ̸= 0

dB ← −A−1
B ANdN =

−30
−50
−50


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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

α1 = max
0≤α

(x + α · d ≥ 0)

= max
0≤α



5− 30 · α ≥ 0
0 + 30 · α ≥ 0
10− 50 · α ≥ 0
0 + 0 · α ≥ 0
5− 20 · α ≥ 0
5− 50 · α ≥ 0


= 0.1
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 1

α2 = arg min
0≤α≤α1

(f (r + α · d))

= arg min
0≤α≤0.1

((5− 30 · α)2 + (0 + 30 · α)2 + (10− 50 · α)2)

= arg min
0≤α≤0.1

(125− 1300α+ 4300α2)

= 0.1

We move to x + 0.1d =



2
3
5
0
3
0


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Projected gradient algorithm
Reduced gradient algorithm

Example : Change of basis

s3 = 0, however s3 ∈ B then: change of basis.
r2 = 3, s1 = 0, s2 = 3
We try B ′ = B − {s3}+ {r2} = (1, 2, 3)

AB′ =

−1 −1 0
0 −1 −1
0 0 −1

 is invertible.

Thus we replace B by B ′.
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

AB =

−1 −1 0
0 −1 −1
0 0 −1


xB = (2, 3, 5)

t∇f B = (4, 6, 10)

AN =

1 0 0
0 1 0
0 0 1


xN = (0, 3, 0)

t∇f N = (0, 0, 0)

A−1
B =

−1 1 −1
0 −1 1
0 0 −1


t∇f̄ (xN) = − t∇fB · A−1

B · AN + t∇fN
= (4, 2, 8)
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2
Other method: rewrite f as a function of
xN = (s1, s2, s3) = (0, 3, 0)

f (x) = r2
1 + r2

2 + r2
3

= (5 + s1 − r2)
2 + (5 + s2 − r3)

2 + (5 + s3)
2

= (5 + s1 − (5 + s2 − r3))
2 + (5 + s2 − r3)

2 + (5 + s3)
2

= (5 + s1 − (5 + s2 − (5 + s3)))
2 + (5 + s2 − (5 + s3))

2 + (5 + s3)
2

f̄ (xN) = (5 + s1 − s2 + s3)
2 + (s2 − s3)

2 + (5 + s3)
2

= s2
1 + 2s2

2 + 3s2
3 − 2s1s2 + 2s1s3 − 4s2s3 + 10s1 − 10s2 + 20s3 + 50

∇(f̄ )(xN) =

2s1 +−2s2 + 2s3 + 10
4s2 +−2s1 − 4s3 − 10
6s3 + 2s1 − 4s2 + 20

 =

4
2
8

 s1
s2
s3
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

dN =

 0
−2
0

← ∇(f̄ )(xN)s1 > 0, s1 = 0
← ∇(f̄ )(xN)s2 > 0, s2 ̸= 0
← ∇(f̄ )(xN)s3 > 0, s3 = 0

dB ← −A−1
B ANdN =

 2
−2
0


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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

α1 = max
0≤α

(x + α · d ≥ 0)

= max
0≤α



2 + 2 · α ≥ 0
3− 2 · α ≥ 0
5 + 0 · α ≥ 0
0 + 0 · α ≥ 0
3− 2 · α ≥ 0
0 + 0 · α ≥ 0


= 1.5

54
Dimitri Watel MRO Chap 05 Gradient, non linear opt.



Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2

α2 = arg min
0≤α≤α1

(f (r + α · d))

= arg min
0≤α≤1.5

((2 + 2 · α)2 + (3− 2 · α)2 + (5 + 0 · α)2)

= arg min
0≤α≤1.5

(38− 4α+ 8α2)

= 0.25

We move to x + 0.25d =



2.5
2.5
5
0

2.5
0


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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 2; Change of basis

No j ∈ B such that xj = 0, then no change of basis.
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 3

AB =

−1 −1 0
0 −1 −1
0 0 −1


xB = (2.5, 2.5, 5)

t∇f B = (5, 5, 10)

AN =

1 0 0
0 1 0
0 0 1


xN = (0, 2.5, 0)

t∇f N = (0, 0, 0)

A−1
B =

−1 1 −1
0 −1 1
0 0 −1


t∇f̄ (xN) = − t∇fB · A−1

B · AN + t∇fN
= (5, 0, 10)
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 3
Other method: rewrite f as a function of
xN = (s1, s2, s3) = (0, 2.5, 0)

f (x) = r2
1 + r2

2 + r2
3

= (5 + s1 − r2)
2 + (5 + s2 − r3)

2 + (5 + s3)
2

= (5 + s1 − (5 + s2 − r3))
2 + (5 + s2 − r3)

2 + (5 + s3)
2

= (5 + s1 − (5 + s2 − (5 + s3)))
2 + (5 + s2 − (5 + s3))

2 + (5 + s3)
2

f̄ (xN) = (5 + s1 − s2 + s3)
2 + (s2 − s3)

2 + (5 + s3)
2

= s2
1 + 2s2

2 + 3s2
3 − 2s1s2 + 2s1s3 − 4s2s3 + 10s1 − 10s2 + 20s3 + 50

∇(f̄ )(xN) =

2s1 +−2s2 + 2s3 + 10
4s2 +−2s1 − 4s3 − 10
6s3 + 2s1 − 4s2 + 20

 =

 5
0
10

 s1
s2
s3
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Projected gradient algorithm
Reduced gradient algorithm

Example : Iteration 3

dN =

0
0
0

← ∇(f̄ )(xN)s1 > 0, s1 = 0
← ∇(f̄ )(xN)s2 = 0, s2 ̸= 0
← ∇(f̄ )(xN)s3 > 0, s3 = 0

dB ← −A−1
B ANdN =

0
0
0


d = 0⇒ (KKT) satisfied. We return x∗ = (2.5, 2.5, 5, 0, 2.5, 0)
with f (x∗) = 31.25.
Moreover, f is convex, the gi (the positivity constraints) are convex
thus linear and the hj are linear, consequently, the sufficient
conditions of (KKT) show that x∗ is a global minimum.
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