Chapter 5 : Non linear optimization, gradient methods

ENSIIE - Operations Research Module

Dimitri Watel (dimitri.watel@ensiie.fr)

2024

Problems MIDA

Minimum Intersecting Disks Area

Let p_1, p_2, \ldots, p_n, q be points in 2D space, build for each point p_i a disk D_i centered at p_i such that

$$\forall i < n, D_i \cap D_{i+1} \neq \emptyset$$

$$q \in D_n$$

and such that the sum of the areas of the disks is minimum.

Modelization: MIDA

Let d_{ij} the distance between p_i and p_j ; d_n the distance between p_n and q.

min
$$\sum_{i=1}^{n} r_i^2$$
s.c.
$$r_i + r_{i+1} \ge d_i \qquad \forall \ 1 \le i < n$$

$$r_n \ge d_n$$

$$(r_i \ge 0) \qquad \forall \ 1 \le i \le n$$

If r is a solution with $r_i < 0$ we can safely replace r_i by $-r_i$ and get a solution with the same objective value.

Karush-Kuhn-Tucker conditions

Let $f, g_i, h_j : \mathbb{R}^n \to \mathbb{R}, \forall i \in [1; m], \forall j \in [1; p]$ of class C^1 . We want to solve

min
$$f(x)$$

 $s.c.$ $g_i(x) \le 0$ $\forall i \in [1; m]$
 $h_j(x) = 0$ $\forall j \in [1; p]$

We write S the set of feasible solutions.

Karush-Kuhn-Tucker conditions

 $x \in S$ satisfies the Karush-Kuhn-Tucker conditions (KKT) if:

$$\exists \lambda_i \geq 0, \mu_j \in \mathbb{R} \qquad \forall i \in \llbracket 1; m
rbracket, j \in \llbracket 1; p
rbracket$$
 $abla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{j=1}^p \mu_j \nabla h_j(x) = 0$

$$\lambda_i \cdot g_i(x) = 0 \quad \forall i \in [1; m]$$

Reminder: qualification

Let $x \in S$. We write the saturated constraints

$$I(x) = \{i \in [1; m] | g_i(x) = 0\}$$

Linear independance qualification

x satisfies the linear independance qualification if the vectors $(\nabla g_i(x), i \in I(x^*) \cup (\nabla h_j(x), j \in [1; p])$ are linearly independant.

Remark: there exists a more general definition of qualification, but we will not use it.

Reminder: necessary and sufficient optimality conditions

(KKT) necessary conditions

If $x^* \in S$ is a local minimum of f and if x^* is qualified then x^* satisfies (KKT).

(KKT) sufficient conditions

If x^* satisfies (KKT), if the functions f et g_i are convex and if the functions h_j are linear, then x^* is a global minimum.

Qualification for MIDA

MIDA: Every point satisfies the linear independance qualification.

 \Rightarrow Every global optimum satisfies (KKT).

Projected gradient algorithm

We want to solve

min
$$f(x)$$

s.c. $g_i(x) \le 0$ $\forall 1 \le i \le m$
 $h_j(x) = 0$ $\forall 1 \le j \le p$

where g_i and h_j are linear and every point satisfies the linear independence qualification.

Informal presentation of the algorithm

The projected gradient algorithm is a gradient descent that does not go out of S. To do so, when we touch the boundary of S, we do not follow the gradient but a projection of the gradient on the boundary.

It stops when the (KKT) conditions are satisfied.

Arrows are the gradient. The polygon is S.

Step 1: find a feasible solution x.

Step 2 : watch the opposite of the gradient $-\nabla f(x)$.

Step 3: we can follow that direction, go to the minimum but do not go out of S. Then start again.

Step 2 : watch the opposite of the gradient $-\nabla f(x)$.

Step 3: it is not possible to follow that direction without going out of S. We project $-\nabla f(x)$ on the boundary of S.

Step 4: go to the minimum in that direction, but do not go out of S. And start again.

Step 2 : watch the opposite of the gradient $-\nabla f(x)$.

 \maltese

Step 3: it is not possible to follow that direction without going out of S. We project $-\nabla f(x)$ on the boundary of S.

Step 4 : We need to project on 2 non-colinear borders \Rightarrow which border do we choose ?

Step 4: Project on the border for which the projection goes toward a lower value of the objective.

Step 5: go to the minimum in that direction, but do not go out of S. And start again.

Step 2 : watch the opposite of the gradient $-\nabla f(x)$.

Step 3: The gradient is orthogonal to the boundary, we stop.

Drawing \rightarrow formulas.

We remind that g_i and h_i are linear:

$$g_{i}(x) = \sum_{k=1}^{n} (a_{ik}x_{k}) - b_{i} \leq 0 \ \forall i \in [1; m]$$
$$h_{j}(x) = \sum_{k=1}^{n} (a'_{jk}x_{k}) - b'_{j} = 0 \ \forall j \in [1; p]$$

We write

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ a'_{11} & a'_{12} & \cdots & a'_{1n} \\ a'_{21} & a'_{22} & \cdots & a'_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a'_{p1} & a'_{p2} & \cdots & a'_{pn} \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \\ b'_1 \\ b'_2 \\ \vdots \\ b'_p \end{pmatrix}$$

Drawing \rightarrow formulas.

Lemma

If L_i is the *i*-th line of A, then

$$L_i = {}^t\nabla(g_i(x))$$

$$\forall i \in [1; m]$$

$$L_{j+m} = {}^t\nabla(h_j(x))$$

$$\forall j \in \llbracket 1; p
rbracket$$

Detect if we are on the boundary

x touches the hyperplanes with equations $h_j(x) = 0$ and $g_i(x) = 0$. We write

$$I(x) = \{i | g_i(x) = 0\}$$

 $J = \{j | h_j(x) = 0\} = [1; p]$

Project the gradient on the boundary

Let
$$A_s = \{L_i, i \in I(x) \cup J\}.$$

Lemma

The projected gradient d is

$$d = \text{Projection of } (-\nabla f(x)) \text{ on } \{y | L_i \cdot y = 0 \ \forall i \in I(x) \cup J\}$$
$$= (I_n - {}^tA_s \cdot (A_s \cdot {}^tA_s)^{-1} \cdot A_s) \cdot (-\nabla f(x))$$

Remarks

 $A_s \cdot {}^t A_s$ is always invertible due to the linear independence qualification.

If
$$I(x) = J = \emptyset$$
 then, $A_s = \emptyset$. In that case, $d = (-\nabla f(x))$.

Translation in the direction d

We write

$$\begin{aligned} &\alpha_1 = \max_{0 \leq \alpha} (x + \alpha \cdot d \in S) \\ &\alpha_2 = \arg\min_{0 \leq \alpha \leq \alpha_1} (f(x + \alpha \cdot d)) \end{aligned}$$

Lemma

If $d \neq \vec{0}$ then $\alpha_1, \alpha_2 \neq 0$.

Case $d = \vec{0}$

Lemma

If $d = \vec{0}$, then, there exists λ_i , for $i \in I(x)$ and μ_j for $j \in J$ such that $-\nabla f(x) = \sum_{i \in I(x)} \lambda_i \cdot L_i + \sum_{j \in J} \mu_j \cdot L_{m+j}$.

Lemma

$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = (A_s \cdot {}^t A_s)^{-1} A_s \cdot (-\nabla f(x))$$

Case $d = \vec{0}$

Lemma

If, for every $i \in I(x)$, $\lambda_i \ge 0$ then, the (KKT) conditions are satisfied.

Lemma

If there exists $\lambda_i < 0$, then we can remove i from I(x). We compute again the projection d' like we did at slide 14.

- $d' \neq \vec{0}$
- $\nabla g_i(x) \cdot d' < 0$

The projected gradient algorithm

```
1: Find x \in S
 2: I(x) \leftarrow \{i \in [1; m] | g_i(x) = 0\}
 3: loop
           A_s \leftarrow \{L_i, i \in I(x) \cup J\}
         d \leftarrow (I_n - {}^tA_s \cdot (A_s \cdot {}^tA_s)^{-1} \cdot A_s) \cdot (-\nabla f(x))
 5:
            if d=0 then
 6:
                  ^{t}(\lambda, \mu) \leftarrow (A_{s} \cdot {}^{t}A_{s})^{-1}A_{s} \cdot (-\nabla f(x))
 7:
                  If \exists i \in I(x), \lambda_i < 0, Remove i from I(x)
 8:
 9.
                   Else return x
            else
10:
                  \alpha_1 \leftarrow \max_{0 \le \alpha} (x + \alpha \cdot d \in S)
11:
                  \alpha_2 \leftarrow \arg\min_{0 < \alpha < \alpha_1} (f(x + \alpha \cdot d))
12:
13:
                  x \leftarrow x + \alpha_2 \cdot d
                  I(x) \leftarrow \{i \in [1; m] | g_i(x) = 0\}
14:
```

Example

We consider the following MIDA instance

 $P = \{p_1, p_2, p_3\} = \{[0, 0], [0, 5], [5, 5]\}$ and q = [5, 10].

We start from the solution $r = (r_1, r_2, r_3) = (5, 0, 5)$.

Example

The formulation of the problem is

min
$$r_1^2 + r_2^2 + r_3^2$$

s.c. $-r_1 - r_2 \le -5$ (g_1)
 $-r_2 - r_3 \le -5$ (g_2)
 $-r_3 \le -5$ (g_3)

$$A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} B = \begin{pmatrix} -5 \\ -5 \\ -5 \end{pmatrix}$$

Example: Iteration 1

If
$$r = (5,0,5)$$
 then $I(r) = \{1,2,3\}$.
$$A_s = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$$
$$A_s \cdot {}^t A_s = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Example: Iteration 1

$${}^{t}\nabla f(r) = (2r_1, 2r_2, 2r_3) = (10, 0, 10)$$

$$d = (I_n - {}^t A_s \cdot (A_s \cdot {}^t A_s)^{-1} \cdot A_s) \cdot (-\nabla f(r)) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot (-\nabla f(r)) = 0$$

Other method : we compute the projection of $-\nabla f(r)$ on

$$L = \{y | L_1 \cdot y = 0; L_2 \cdot y = 0; L_3 \cdot y = 0\}$$

= \{y | -y_1 - y_2 = 0; -y_2 - y_3 = 0; -y_3 = 0\}
= \{y = 0\}

The projection is then necessarily d = 0.

$$A_s = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$$

$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = (A_s \cdot {}^t A_s)^{-1} \cdot A_s \cdot (-\nabla f(r)) = \begin{pmatrix} 10 \\ -10 \\ 20 \end{pmatrix}$$

Other method:

$$-\nabla f(r) = \begin{pmatrix} -10\\0\\-10 \end{pmatrix} = \lambda_1 L_1 + \lambda_2 L_2 + \lambda_3 L_3 = 10 \begin{pmatrix} -1\\-1\\0 \end{pmatrix} - 10 \begin{pmatrix} 0\\-1\\-1 \end{pmatrix} + 20 \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$$

$$\lambda_2 < 0 \Rightarrow I(r) \leftarrow I(r) \setminus \{2\} = \{1,3\}$$

$$I(r) = \{1,3\}.$$

$$A_s = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_3 \end{pmatrix}$$

$$A_s \cdot {}^t A_s = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$${}^{t}\nabla f(r) = (2r_1, 2r_2, 2r_3) = (10, 0, 10)$$

$$d = (I_n - {}^t A_s \cdot (A_s \cdot {}^t A_s)^{-1} \cdot A_s) \cdot (-\nabla f(r)) = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 0.5 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 0 \\ -10 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ 0 \end{pmatrix}$$

Other method : we compute the projection of $-\nabla f(r)$ on

$$L = \{y | L_1 \cdot y = 0; L_3 \cdot y = 0\}$$

= \{y | -y_1 - y_2 = 0; -y_3 = 0\}
= \{y | y_1 = -y_2; y_3 = 0\}

The projection is then necessarily $d = \beta \cdot (1, -1, 0)$ knowing that

$$-\nabla f(r) \cdot d = d^2 \Rightarrow -10\beta = 2 \cdot \beta^2 \Rightarrow \beta = -5$$

Example: Iteration 1, end

$$\begin{split} \alpha_1 &= \max_{0 \leq \alpha} (r + \alpha \cdot d \in S) \\ &= \max_{0 \leq \alpha} \begin{pmatrix} 5 - 5 \cdot \alpha \\ 0 + 5 \cdot \alpha \\ 5 + 0 \cdot \alpha \end{pmatrix} \in S) \\ &= \max_{0 \leq \alpha} \begin{pmatrix} 5 - 5 \cdot \alpha + 0 + 5 \cdot \alpha \geq 5 \\ 0 + 5 \cdot \alpha + 5 + 0 \cdot \alpha \geq 5 \\ 5 + 0 \cdot \alpha \geq 5 \end{pmatrix} \\ &= \max_{0 \leq \alpha} \begin{pmatrix} 5 \geq 5 \\ 5 + 5 \cdot \alpha \geq 5 \\ 5 \geq 5 \end{pmatrix} \\ &= +\infty \end{split}$$

Example: Iteration 1, end

$$\begin{split} \alpha_2 &= \arg\min_{0 \leq \alpha \leq \alpha_1} (f(r + \alpha \cdot d)) \\ &= \arg\min_{0 \leq \alpha} (f\left(\begin{pmatrix} 5 - 5 \cdot \alpha \\ 0 + 5 \cdot \alpha \\ 5 + 0 \cdot \alpha \end{pmatrix})) \\ &= \arg\min_{0 \leq \alpha} ((5 - 5 \cdot \alpha)^2 + (0 + 5 \cdot \alpha)^2 + (5 + 0 \cdot \alpha)^2) \\ &= \arg\min_{0 \leq \alpha} (50 - 25\alpha + 50\alpha^2) \\ &= \frac{1}{2} \end{split}$$

We move to
$$r + \frac{1}{2}d = \begin{pmatrix} 2.5 \\ 2.5 \\ 5 \end{pmatrix}$$
.

If
$$r = (2.5, 2.5, 5)$$
 then $I(r) = \{1, 3\}$.
$$A_s = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_3 \end{pmatrix}$$
$$A_s \cdot {}^t A_s = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$${}^{t}\nabla f(r) = (2r_1, 2r_2, 2r_3) = (5, 5, 10)$$

$$d = (I_n - {}^t A_s \cdot (A_s \cdot {}^t A_s)^{-1} \cdot A_s) \cdot (-\nabla f(r)) = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 0.5 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ -5 \\ -10 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Other method : we compute the projection of $-\nabla f(r)$ on

$$L = \{y | L_1 \cdot y = 0; L_3 \cdot y = 0\}$$

= \{y | -y_1 - y_2 = 0; -y_3 = 0\}
= \{y | y_1 = -y_2; y_3 = 0\}

The projection is then necessarily $d = \beta \cdot (1, -1, 0)$ knowing that

$$-\nabla f(r) \cdot d = d^2 \Rightarrow 0 = 2 \cdot \beta^2 \Rightarrow \beta = 0$$

$$A_s = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{matrix} L_1 \\ L_2 \end{matrix}$$

$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_3 \end{pmatrix} = (A_s \cdot {}^t A_s)^{-1} \cdot A_s \cdot (-\nabla f(r)) = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

Other method:

$$-\nabla f(r) = \begin{pmatrix} -5 \\ -5 \\ -10 \end{pmatrix} = \lambda_1 L_1 + \lambda_3 L_3 = 5 \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} + 10 \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

 $\lambda_1, \lambda_3 \ge 0 \Rightarrow$ (KKT) satisfied. We return $r^* = (2.5, 2.5, 5)$ with $f(r^*) = 31.25$.

Moreover, f is convex and the g_i are convex thus linear, consequently, the sufficient conditions of (KKT) show that r^* is a global minimum.

Reduced gradient algorithm

We want to solve

min
$$f(x)$$

s.c. $h_j(x) = 0$ $\forall 1 \le j \le p$
 $x_i \ge 0$ $\forall 1 \le i \le n$

where h_i are linear and p < n.

Informal presentation of the algorithm

The reduced gradient algorithm is a gradient descent that does not go out of S. Because of the equalities, we can rewrite some of the variables x_B with the rest of the variables x_N . We then reduce f(x) and $\nabla f(x)$ to $f(x_N)$ and $\nabla f(x_N)$ lt stops when the (KKT) conditions are satisfied.

Reminder

Augmented form

Let (P) be the following program

min
$$f(x)$$

s.c. $g_i(x) \le 0$ $\forall 1 \le i \le m$
 $h_i(x) = 0$ $\forall 1 \le j \le p$

then, there exists a program (P') equivalent to (P) with the following form

min
$$f(x)$$

s.c. $h_j(x) = 0$ $\forall 1 \le j \le p$
 $x_i \ge 0$ $\forall 1 \le i \le n$

Reminder: tricks

If
$$g_i(x) \le 0$$
 then add a slack variable $s_i \ge 0$ and set $h_i(x) = g_i(x) + s_i = 0$.

If $x_i \in \mathbb{R}$ then remplace x_i by two variables $x_i^+ \geq 0$ and $x_i^- \geq 0$ and set $x_i = x_i^+ + x_i^-$.

If
$$g_i(x) = -x_i \le 0$$
 then do nothing.

If
$$g_i(x) = x_i \le 0$$
 then replace x_i by $-x_i$.

Reminder: slack variable and drawing

No drawing

We remind that h_i are linear:

$$h_j(x) = \sum_{k=1}^n (a_{jk}x_k) - b_j = 0 \ \forall j \in [1; p]$$

We write

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix}$$

We assume that rg(A) = p.

Basis and non basis

Let $B \subset [1; n]$ of size p and $N = [1; n] \setminus B$.

We write

 A_B = the columns of A for which the index is in B.

 A_N = the columns of A for which the index is in N.

 x_B = the variables of x for which the index is in B.

 x_N = the variables of x for which the index is in N.

 ∇f_B = the coefficients of $\nabla f(x)$ for which the index is in B.

 ∇f_N = the coefficients of $\nabla f(x)$ for which the index is in N.

We can rewrite A, x and $\nabla f(x)$ this way:

$$A = \begin{pmatrix} A_B & A_N \end{pmatrix}, x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, \nabla f(x) = \begin{pmatrix} \nabla f_B \\ \nabla f_N \end{pmatrix}$$

Reduction, reduced gradient

Lemma

If A_B is invertible, it is possible to rewrite f(x) with only x_N with

$$x_B = A_B^{-1} \cdot b - A_B^{-1} \cdot A_N \cdot x_N$$

Let $\bar{f}: \mathbb{R}^{n-p} \to \mathbb{R}$ such that $\bar{f}(x_N) = f(x_B, x_N)$.

Lemma

The reduced gradient is the gradient of \bar{f} .

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B}\cdot A_{B}^{-1}\cdot A_{N} + {}^{t}\nabla f_{N}$$

Direction to follow

Definition

Given $\nabla \bar{f}(x_N)$, we define the direction d, divided in two parts, d_B and d_N , this way

$$\forall j \in N, d_j = egin{cases} 0 & ext{if }
abla ar{f}(x_N)_j > 0 \text{ and } x_j = 0 \\ -
abla ar{f}(x_N)_j & ext{otherwise} \end{cases}$$

$$d_B = -A_B^{-1} \cdot A_N \cdot d_N$$

Lemma

For all $\alpha \in \mathbb{R}$, $A \cdot (x + \alpha \cdot d) = b$.

Case
$$d = \vec{0}$$

Lemma

If $d = \vec{0}$ then, the (KKT) conditions are satisfied.

Translation in the direction $d \neq \vec{0}$

As in the case of the projected gradient, we write

$$\begin{split} &\alpha_1 = \max_{0 \leq \alpha} (\alpha | x + \alpha \cdot d \geq 0) \\ &\alpha_2 = \arg\min_{0 \leq \alpha \leq \alpha_1} (f(x + \alpha \cdot d)) \end{split}$$

We move to

$$y = x + \alpha_2 \cdot d$$

Remark

 α_1 may possibly be nul.

Change of basis

Lemma

If there exists $s \in B$ such that $y_s = 0$; and if we keep the basis for the next iteration, then the next value of α_1 may be $0 \to$ we are stuck.

Non-degeneration hypothesis

The hypothesis assumes that, whatever the basis B is, if A_B is invertible, then $A_B^{-1} \cdot b > 0$.

Lemma

If there exists $s \in B$ such that $y_s = 0$, then, under the non-degeneration hypothesis, there exists $r \in N$ such that $y_r \neq 0$ and $A_{B \cup \{r\} \setminus \{s\}}$ is invertible.

The reduced gradient algorithm

```
1: Find x \in S and B such that A_B is invertible
 2: loop
             {}^{t}\nabla ar{f}(\mathsf{x}_{\mathsf{N}}) \leftarrow -{}^{t}\nabla f_{\mathsf{B}}\cdot A_{\mathsf{P}}^{-1}\cdot A_{\mathsf{N}} + {}^{t}\nabla f_{\mathsf{N}}
 3:
             for i \in N do
 4:
                   If \nabla \bar{f}(x_N)_i > 0 and x_i = 0 then d_i \leftarrow 0 else d_i \leftarrow -\nabla \bar{f}(x_N)_i
 5:
             d_B \leftarrow -A_B^{-1} A_N d_N
 6:
 7:
             If d=0 then return x
             \alpha_1 \leftarrow \max_{0 < \alpha} (x + \alpha \cdot d \ge 0)
 8:
             \alpha_2 \leftarrow \arg\min_{0 < \alpha < \alpha_1} (f(x + \alpha \cdot d))
 9:
             x \leftarrow x + \alpha_2 \cdot d
10:
11:
             if \exists s such that x_s = 0 then
12:
                    for r \in N by decreasing order of x_r do
                          if A_{B\cup\{r\}\setminus\{s\}} is invertible then
13:
                                B \leftarrow B \cup \{r\} \setminus \{s\}
14:
15:
                                Restart the loop
```

Example

We consider the following MIDA instance $P = \{p_1, p_2, p_3\} = \{[0, 0], [0, 5], [5, 5]\}$ and q = [5, 10]. We start from the solution $r = (r_1, r_2, r_3) = (5, 0, 10)$.

Example

The formulation of the problem is

min
$$r_1^2 + r_2^2 + r_3^2$$

s.c. $-r_1 - r_2 + s_1 = -5$ (h_1)
 $-r_2 - r_3 + s_2 = -5$ (h_2)
 $-r_3 + s_3 = -5$ (h_3)

$$A = \begin{pmatrix} -1 & -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} -5 \\ -5 \\ -5 \end{pmatrix}$$

$${}^{t}\nabla f(x) = (2r_{1}, 2r_{2}, 2r_{3}, 0, 0, 0)$$

$$r = (5,0,10) \Rightarrow x = (5,0,10,0,5,5)$$

We start from the basis $B = (1,3,6)$ et $N = (2,4,5)$.

$$A_{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \qquad A_{N} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_{B} = (5, 10, 5) \qquad x_{N} = (0, 0, 5)$$

$${}^{t}\nabla f_{B} = (10, 20, 0) \qquad {}^{t}\nabla f_{N} = (0, 0, 0)$$

$$A_{B}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-1} \cdot A_{N} + {}^{t}\nabla f_{N}$$

$$= (-30, 10, 20)$$

Other method: rewrite f as a function of $x_N = (r_2, s_1, s_2) = (0, 0, 5)$

$$f(x) = r_1^2 + r_2^2 + r_3^2$$

$$\bar{f}(x_N) = (5 + s_1 - r_2)^2 + r_2^2 + (5 + s_2 - r_2)^2$$

$$= 3r_2^2 + s_1^2 + s_2^2 - 2r_2s_1 - 2r_2s_2 - 20r_2 + 10s_1 + 10s_2 + 50$$

$$\nabla(\bar{f})(x_N) = \begin{pmatrix} 6r_2 - 2s_1 - 2s_2 - 20 \\ 2s_1 - 2r_2 + 10 \\ 2s_2 - 2r_2 + 10 \end{pmatrix} = \begin{pmatrix} -30 \\ 10 \\ 20 \end{pmatrix} \begin{cases} r_2 \\ s_1 \\ s_2 \end{cases}$$

$$d_{N} = \begin{pmatrix} 30 \\ 0 \\ -20 \end{pmatrix} \leftarrow \nabla(\bar{f})(x_{N})_{r_{2}} \leq 0, r_{2} = 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{1}} > 0, s_{1} = 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{2}} > 0, s_{2} \neq 0$$

$$d_{B} \leftarrow -A_{B}^{-1}A_{N}d_{N} = \begin{pmatrix} -30 \\ -50 \\ -50 \end{pmatrix}$$

$$\begin{split} \alpha_1 &= \max_{0 \leq \alpha} (x + \alpha \cdot d \geq 0) \\ &= \max_{0 \leq \alpha} \begin{pmatrix} 5 - 30 \cdot \alpha \geq 0 \\ 0 + 30 \cdot \alpha \geq 0 \\ 10 - 50 \cdot \alpha \geq 0 \\ 0 + 0 \cdot \alpha \geq 0 \\ 5 - 20 \cdot \alpha \geq 0 \\ 5 - 50 \cdot \alpha \geq 0 \end{pmatrix} \\ &= 0.1 \end{split}$$

$$\begin{aligned} \alpha_2 &= \arg\min_{0 \leq \alpha \leq \alpha_1} (f(r + \alpha \cdot d)) \\ &= \arg\min_{0 \leq \alpha \leq 0.1} ((5 - 30 \cdot \alpha)^2 + (0 + 30 \cdot \alpha)^2 + (10 - 50 \cdot \alpha)^2) \\ &= \arg\min_{0 \leq \alpha \leq 0.1} (125 - 1300\alpha + 4300\alpha^2) \\ &= 0.1 \end{aligned}$$

We move to
$$x + 0.1d = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 0 \\ 3 \\ 0 \end{pmatrix}$$

Example: Change of basis

 $s_3 = 0$, however $s_3 \in B$ then: change of basis.

$$r_2=3, s_1=0, s_2=3$$

We try
$$B' = B - \{s_3\} + \{r_2\} = (1, 2, 3)$$

$$A_{B'} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$
 is invertible.

Thus we replace B by B'.

$$A_{B} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \qquad A_{N} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_{B} = (2, 3, 5) \qquad x_{N} = (0, 3, 0)$$

$${}^{t}\nabla f_{B} = (4, 6, 10) \qquad {}^{t}\nabla f_{N} = (0, 0, 0)$$

$$A_{B}^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-1} \cdot A_{N} + {}^{t}\nabla f_{N}$$

$$= (4, 2, 8)$$

Other method: rewrite f as a function of

$$x_N = (s_1, s_2, s_3) = (0, 3, 0)$$

$$f(x) = r_1^2 + r_2^2 + r_3^2$$

$$= (5 + s_1 - r_2)^2 + (5 + s_2 - r_3)^2 + (5 + s_3)^2$$

$$= (5 + s_1 - (5 + s_2 - r_3))^2 + (5 + s_2 - r_3)^2 + (5 + s_3)^2$$

$$= (5 + s_1 - (5 + s_2 - (5 + s_3)))^2 + (5 + s_2 - (5 + s_3))^2 + (5 + s_3)^2$$

$$\bar{f}(x_N) = (5 + s_1 - s_2 + s_3)^2 + (s_2 - s_3)^2 + (5 + s_3)^2$$

$$= s_1^2 + 2s_2^2 + 3s_3^2 - 2s_1s_2 + 2s_1s_3 - 4s_2s_3 + 10s_1 - 10s_2 + 20s_3 + 50$$

$$\nabla(\bar{f})(x_N) = \begin{pmatrix} 2s_1 + -2s_2 + 2s_3 + 10 \\ 4s_2 + -2s_1 - 4s_3 - 10 \\ 6s_3 + 2s_1 - 4s_2 + 20 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 8 \end{pmatrix} \begin{cases} s_1 \\ s_2 \\ s_3 \end{cases}$$

$$d_{N} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} \leftarrow \nabla(\bar{f})(x_{N})_{s_{1}} > 0, s_{1} = 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{2}} > 0, s_{2} \neq 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{3}} > 0, s_{3} = 0$$

$$d_{B} \leftarrow -A_{B}^{-1}A_{N}d_{N} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$$

$$\alpha_1 = \max_{0 \le \alpha} (x + \alpha \cdot d \ge 0)$$

$$= \max_{0 \le \alpha} \begin{pmatrix} 2 + 2 \cdot \alpha \ge 0 \\ 3 - 2 \cdot \alpha \ge 0 \\ 5 + 0 \cdot \alpha \ge 0 \\ 0 + 0 \cdot \alpha \ge 0 \\ 3 - 2 \cdot \alpha \ge 0 \\ 0 + 0 \cdot \alpha \ge 0 \end{pmatrix}$$

$$= 1.5$$

$$\begin{aligned} \alpha_2 &= \arg\min_{0 \leq \alpha \leq \alpha_1} (f(r + \alpha \cdot d)) \\ &= \arg\min_{0 \leq \alpha \leq 1.5} ((2 + 2 \cdot \alpha)^2 + (3 - 2 \cdot \alpha)^2 + (5 + 0 \cdot \alpha)^2) \\ &= \arg\min_{0 \leq \alpha \leq 1.5} (38 - 4\alpha + 8\alpha^2) \\ &= 0.25 \end{aligned}$$

We move to
$$x + 0.25d = \begin{pmatrix} 2.5 \\ 2.5 \\ 5 \\ 0 \\ 2.5 \\ 0 \end{pmatrix}$$

Example: Iteration 2; Change of basis

No $j \in B$ such that $x_j = 0$, then no change of basis.

$$A_{B} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \qquad A_{N} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_{B} = (2.5, 2.5, 5) \qquad x_{N} = (0, 2.5, 0)$$

$${}^{t}\nabla f_{B} = (5, 5, 10) \qquad {}^{t}\nabla f_{N} = (0, 0, 0)$$

$$A_{B}^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-1} \cdot A_{N} + {}^{t}\nabla f_{N}$$

$$= (5, 0, 10)$$

Other method: rewrite f as a function of

$$x_N = (s_1, s_2, s_3) = (0, 2.5, 0)$$

$$f(x) = r_1^2 + r_2^2 + r_3^2$$

$$= (5 + s_1 - r_2)^2 + (5 + s_2 - r_3)^2 + (5 + s_3)^2$$

$$= (5 + s_1 - (5 + s_2 - r_3))^2 + (5 + s_2 - r_3)^2 + (5 + s_3)^2$$

$$= (5 + s_1 - (5 + s_2 - (5 + s_3)))^2 + (5 + s_2 - (5 + s_3))^2 + (5 + s_3)^2$$

$$\bar{f}(x_N) = (5 + s_1 - s_2 + s_3)^2 + (s_2 - s_3)^2 + (5 + s_3)^2$$

$$= s_1^2 + 2s_2^2 + 3s_3^2 - 2s_1s_2 + 2s_1s_3 - 4s_2s_3 + 10s_1 - 10s_2 + 20s_3 + 50$$

$$\nabla(\bar{f})(x_N) = \begin{pmatrix} 2s_1 + -2s_2 + 2s_3 + 10 \\ 4s_2 + -2s_1 - 4s_3 - 10 \\ 6s_3 + 2s_1 - 4s_2 + 20 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 10 \end{pmatrix} \begin{cases} s_1 \\ s_2 \\ s_3 \end{cases}$$

$$d_{N} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \leftarrow \nabla(\bar{f})(x_{N})_{s_{1}} > 0, s_{1} = 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{2}} = 0, s_{2} \neq 0$$

$$\leftarrow \nabla(\bar{f})(x_{N})_{s_{3}} > 0, s_{3} = 0$$

$$d_{B} \leftarrow -A_{B}^{-1}A_{N}d_{N} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$d = 0 \Rightarrow (KKT)$$
 satisfied. We return $x^* = (2.5, 2.5, 5, 0, 2.5, 0)$ with $f(x^*) = 31.25$.

Moreover, f is convex, the g_i (the positivity constraints) are convex thus linear and the h_j are linear, consequently, the sufficient conditions of (KKT) show that x^* is a **global minimum**.