
Non linear optimization, gradient methods

Recherche opérationnelle
Dimitri Watel - ENSIIE

2024

In this chapter, we focus on two gradient descent meth-
ods; these methods extend linear programming tech-
niques to the optimization of arbitrary (non-linear) func-
tions. For simplicity, we will assume that the constraints
are linear, but these techniques can also be adapted to
more general cases.

Let f, gi, hj : Rn → R,∀ i ∈ J1;mK,∀ j ∈ J1; pK of class
C1.

We want to solve

min f(x)

s.c. gi(x) ≤ 0 ∀ i ∈ J1;mK
hj(x) = 0 ∀ j ∈ J1; pK

We write S the set of feasible solutions.

1 Qualification and optimality
conditions

We will make some reminders about these two concepts
that will be used in the course.

Definition 1 (Saturated constraints). Let x ∈ S. We
write the saturated constraints

I(x) = {i ∈ J1;mK|gi(x) = 0}

Definition 2 (Karush-Kuhn-Tucker conditions). x ∈ S
satisfies the Karush-Kuhn-Tucker conditions (KKT) if:

∃λi ≥ 0, µj ∈ R ∀ i ∈ J1;mK
j ∈ J1; pK

∇f(x) +
∑

i∈I(x)

λi∇gi(x) +
p∑

j=1

µj∇hj(x) = 0

Definition 3 (Qualification of linear independance). x
satisfies the linear independance qualification if the vec-
tors (∇gi(x), i ∈ I(x∗) ∪ (∇hj(x), j ∈ J1; pK) are linearly
independant.

Remark: there exists a more general definition of
qualification, but we will not use it.

Theorem 1.1 ((KKT) necessary conditions). If x∗ ∈ S
is a local minimum of f and if x∗ is qualified then x∗

satisfies (KKT).

Theorem 1.2 ((KKT) sufficient conditions). If x∗ sat-
isfies (KKT), if the functions f et gi are convex and if
the functions hj are linear, then x∗ is a global minimum.

We propose two algorithms in the following sections
that allow us to reach a point satisfying the Karush-
Kuhn-Tucker conditions in order to use the sufficient op-
timality conditions.

2 Projected gradient algorithm

Hypothesis: we assume that all points in S are qualified
under linear independence.

The projected gradient algorithm is a gradient descent
that does not go out of S. To do so, when we touch
the boundary of S, we do not follow the gradient but a
projection of the gradient on the boundary.

It stops when the (KKT) conditions are satisfied.
We use the following notations:

gi(x) =

n∑
k=1

(aikxk)− bi ≤ 0 ∀i ∈ J1;mK

hj(x) =

n∑
k=1

(a′jkxk)− b′j = 0 ∀j ∈ J1; pK

A =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

a′11 a′12 · · · a′1n
a′21 a′22 · · · a′2n
...

...
...

...
a′p1 a′p2 · · · a′pn


B =



b1
b2
...
bm
b′1
b′2
...
b′p


Notice that

Li =
t∇(gi(x)) ∀i ∈ J1;mK

Lj+m =
t∇(hj(x)) ∀j ∈ J1; pK

1



We start at a point x ∈ S and move along the gradi-
ent. This point x is not necessarily easy to find. One
possibility is to use the so-called two-phase method, but
that is not the subject of this chapter, so we assume that
x is given to us. Each iteration of the algorithm consists
of 3 steps: 1. detect the edges touched by x; 2. project
the negative gradient onto the edges and decide on a di-
rection to follow; 3. follow this direction as long as it
decreases the value of f .

2.1 Detect the boundaries

The set S is represented by a series of inequalities gi and
equalities hj . Since these functions are linear, we have
a polytope here (a generalization of a polygon in dimen-
sioni n). This polytope has a boundary for each inequal-
ity gi(x) ≤ 0. We are on the boundary if gi(x) = 0 and
we are outside the boundary if gi(x) < 0 (and we are on
the wrong side of the boundary if gi(x) > 0). We can
also consider an equality as a somewhat special bound-
ary (since it wraps around the entire space S). Thus,
to summarize, the set of boundaries is defined with the
following two sets:

I(x) = {i|gi(x) = 0}

J = {j|hj(x) = 0} = J1; pK

We recognize the set of saturated constraints I(x).

g1(x) = 0

g1(x) > 0

g1(x) < 0
S

2.2 Project on the boundaries

We want to project the opposite of the gradient onto
the boundary. First and foremost, we want to follow the
opposite of the gradient because the gradient indicates
the direction to take to increase the function the most.
By following the opposite, we are moving in the direction
that decreases the function the most. However, it is not
always possible to follow this direction, especially if we
are on a boundary. Therefore, we need to project onto
the boundary to follow the closest valid direction to the
opposite of the gradient.
To follow the boundary, one must follow a direction

that keeps us on the boundary. To do this, we need to
follow a direction such that gi(x) for i ∈ I(x) and hj(x)
for j ∈ J remain zero. For any C1 function, a direction
that does not change the value of a function is orthogonal
to the gradient of that function.

•x

∇f(x)

−∇f(x)

∇f(x) · d > 0
f increases in this direction

∇f(x) · d < 0
f decreases in this direction

∇f(x) · d = 0
f is constant in this direc-

tion

In order to stay on the boundary, we will therefore look
for a direction that is orthogonal to the gradient of all
the constraints defining this boundary.

d

Lemma 2.1. Let As = {Li, i ∈ I(x) ∪ J}. We assume
that I(x) ∪ J ̸= ∅. Let B = {y|Li · y = 0 ∀i ∈ I(x) ∪ J}
The projected gradient d is

d = Projection of (−∇f(x)) on B

=
(
In − tAs · (As · tAs)

−1 ·As

)
· (−∇f(x))

Proof. The space onto which we project, B = {y|Li ·y =
0 ∀i ∈ I(x)∪J}, is orthogonal to all linear combinations
of the vectors Li for i ∈ I(x)∪ J . Thus, it is the orthog-
onal space to all the rows of As. Let us suppose that we
find the projection p of −∇f(x) onto the space spanned
by the rows of As; then, to find the orthogonal projection
d of x onto B, it is sufficient to calculate d = −∇f(x)−p.
To find p, it suffices to realize that projecting onto the

rows of As is equivalent to projecting onto the columns
of tAs. We can then use the following known result:
Given a vector z and a matrix A such that tAA is

invertible, the orthogonal projection of z onto the space
spanned by the columns of A is A(tAA)−1 tAz.
If we replace A with tAs, we need to show that As ·

tAs is invertible. However, every point in S satisfies the
qualification of linear independence, so the columns of
tAs are linearly independent, making the rank of tAs

equal to the number of its columns: |J |+ |I(x)|. In other
words, its kernel is empty. Finally, if z is in the kernel of
As · tAs, we have

As · tAs · z = 0

(tz ·As) · tAs · z = 0

∥tAs · z∥2 = 0

This vector is in Rn thus

tAs · z = 0

Therefore, z is in the kernel of tAs. Since this is empty,
we deduce that the kernel of As · tAs is also empty. Thus,

2



the rank of As ·tAs = |J |+|I(x)|, so this matrix is indeed
invertible.

Thus, the projection p of −∇f(x) onto the space
spanned by the rows of As is

p = tAs · (As · tAs)
−1 ·As · (−∇f(x)

d = −∇f(x)− p

d =
(
In − tAs · (As · tAs)

−1 ·As

)
· (−∇f(x))

Remark 1. If I(x) = J = ∅ then we simply set d =
−∇f(x) since we project onto the entire space.

If d ̸= 0, we can move on to the next step to follow
this direction.

One may encounter a problem if d = 0⃗. That is, if the
space onto which we project is orthogonal to the gradient.
This can occur in two scenarios: either we have reached
a local minimum, or we have projected onto too many
edges at once.

Before demonstrating what happens in this case, let’s
consider some examples in 2 dimensions. In the following
figure, we have a projection of the gradient at a corner
of the polygon; this corner is defined by two inequal-
ity constraints, g1 and g2, which define two edges of the
polygon. Specifically, we are trying to project a vector
onto two lines simultaneously. The only possible solu-
tion is the zero vector: the only vector orthogonal to the
normals of the two lines.

g1(x) = 0

g2(x) = 0

S

•

−∇f(x)

The algorithm must follow one of the two edges. To
choose which edge to follow, the projected gradient algo-
rithm will attempt to project onto each of the two edges,
as if, temporarily, the other edge had been removed.

g1(x) = 0

g2(x) = 0

S

•

−∇f(x)d

The direction d is valid; if we follow this direction,
we stay within S. Here is what happens if we now try
to project onto the edge identified by the constraint g1
without considering the constraint g2.

g1(x) = 0

g2(x) = 0

S

•

−∇f(x)d

We note this time that following the direction d is not
valid, as it causes us to exit the feasible solution set S.
Therefore, it is important to make the right choice. We
have, in a way, identified that g1 is a necessary constraint
to move forward in this iteration, while the constraint g2
is inactive. The goal of the algorithm is to identify an
inactive constraint, temporarily remove it, project onto
the other constraints, and continue as normal. Note that
there may be several good choices (thus several inactive
constraints), and there may also be no good choice (no
inactive constraints). In the latter case, it can be shown
that the (KKT) conditions are satisfied, which stops the
algorithm. In the former case, it is sufficient to arbitrarily
choose one of the possibilities.

To identify an inactive constraint, one could look to
remove each constraint gi one by one and test the direc-
tion di in each case. To determine if the direction di is
valid, it is necessary to check that gi remains negative
if we move in this direction. Thus, since gi was zero at
x, it suffices to follow a direction close to the opposite
of the gradient of gi to decrease gi. Therefore, this new
direction di must satisfy ∇gi(x) ·di < 0. However, rather
than testing each constraint, we will see that there is a
simpler method that reliably provides the correct direc-
tion. Note that this method is only valid if the linear
independence qualification assumption holds.

Lemma 2.2. If d = 0⃗, then, there exists λi, for i ∈ I(x)
and µj for j ∈ J such that

−∇f(x) =
∑

i∈I(x)

λi · Li +
∑
j∈J

µj · Lm+j

.

Proof. We projected −∇f(x) onto B = {y|Li ·y = 0 ∀i ∈
I(x)∪J}. Thus, in the case where the projection is zero,
this means that −∇f(x) is orthogonal to B. Therefore,
it belongs to the space generated by the lines of As, hence
the result.

In this case, we can calculate λ and µ by noting that
the formula from lemma 2.2 can be rewritten as follows:

3



−∇f(x) = tAs

(
λ
µ

)
(As · tAs)

−1As · (−∇f(x)) =
(
λ
µ

)
It is the values of λi that will indicate the inactive or

necessary constraints. The µj do not indicate anything.
The equality constraints are always necessary. The rule
is very simple. If λi < 0, then gi is inactive.

It can be noted that the formula of lemma 2.2 is exactly
the conditions (KKT) if λi ≥ 0 for all i ∈ I(x). In this
case, we can stop the algorithm; we have achieved our
objective. Here are two examples of 2D cases where d is
zero and no boundary constraint is inactive. Given the
direction of the gradient, we see that we indeed have a
local minimum.

g1(x) = 0

g2(x) = 0

S

•−∇f(x)

g1(x) = 0

S

•
−∇f(x)

The following lemma demonstrates that any constraint
such that λi < 0 is inactive.

Lemma 2.3. Assuming there exists k ∈ I(x) such that
λk < 0 then let B′ = {y|Li · y = 0 ∀i ∈ I(x)\{k} ∪ J}
and

d′ = Projection of (−∇f(x)) on B′

Then d′ ̸= 0⃗ and ∇gk(x) · d′ < 0.

Remark 2. This lemma is true only due to the assump-
tion of the qualification of linear independence.

Proof. According to Lemma 2.2, we have

−∇f(x) =
∑

i∈I(x)

λi · Li +
∑
j∈J

µj · Lm+j

As d′ ∈ B′, if d′ = 0⃗ then, there exists λ′
i, for i ∈

I(x)\{k} and µ′
j for j ∈ J such that

−∇f(x) =
∑

i∈I(x)\{k}

λ′
i · Li +

∑
j∈J

µ′
j · Lm+j

However as x is qualidifed with linear independence.

λi = λ′
i pour i ∈ I(x)\{k}

λk = 0

µj = µ′
j pour j ∈ J

Or λk < 0 by assumption, so there is a contradiction and
thus d′ ̸= 0⃗. Now, let’s show that Lk · d′ < 0. Since d′ ∈
B′, it follows that d′ is orthogonal to Li for i ∈ I(x)\{k},
and to Lm+j for j ∈ J . Therefore, picking up from the
first equality:

−∇f(x) · d′ = λk · Lk · d′

Knowing a vector v and its non-zero projection p onto a
subspace, we have v · p = ∥p∥2 > 0. Thus

0 < λk · Lk · d′

As λk < 0

0 > Lk · d′

One very important point is that the inactive con-
straint is not permanently removed from the set of con-
straints. It must be reconsidered in the following itera-
tions if it becomes active again.

2.3 Follow the direction

The last step is a classic gradient descent step, which
involves following the given direction until a global or
local minimum of that direction is reached. We set the
following values:

α1 = max
0≤α

(x+ α · d ∈ S)

α2 = arg min
0≤α≤α1

(f(x+ α · d))

The next point is x+α2 · d. A new iteration is started
from the beginning with this new point. Iterations are
performed until a point is found where the conditions
(KKT) are satisfied.

Lemma 2.4. If d ̸= 0⃗ then α1, α2 ̸= 0.

Proof.

The pseudo-code of the algorithm is the following:

1: Find x ∈ S
2: I(x)← {i ∈ J1;mK|gi(x) = 0}
3: loop
4: As ← {Li, i ∈ I(x) ∪ J}
5: d← (In − tAs · (As · tAs)

−1 ·As) · (−∇f(x))
6: if d = 0 then
7:

t(λ, µ)← (As · tAs)
−1As · (−∇f(x))

8: If ∃i ∈ I(x), λi < 0, Remove i from I(x)
9: Else return x

10: else
11: α1 ← max

0≤α
(x+ α · d ∈ S)

12: α2 ← arg min
0≤α≤α1

(f(x+ α · d))
13: x← x+ α2 · d
14: I(x)← {i ∈ J1;mK|gi(x) = 0}

The projected gradient is relatively simple to imple-
ment in the case of linear constraints. In the nonlinear
case, the projection is more complicated. It should also
be noted that this algorithm behaves like a gradient de-
scent when there are no constraints.

4



3 Reduced gradient algorithm

Hypothesis: we assume that there are no inequality
constraints.
The reduced gradient algorithm is a gradient descent

that does not go out of S. Because of the equalities, we
can rewrite some of the variables xB with the rest of the
variables xN . We then reduce f(x) and ∇f(x) to f(xN )
and ∇f(xN )
It stops when the (KKT) conditions are satisfied. This

algorithm is similar to the simplex algorithm.

Definition 4 (Augmented form). Let (P ) be the follow-
ing program

min f(x)

s.c. gi(x) ≤ 0 ∀ 1 ≤ i ≤ m

hj(x) = 0 ∀ 1 ≤ j ≤ p

then, there exists a program (P ′) equivalent to (P )
with the following form

min f(x)

s.c. hj(x) = 0 ∀ 1 ≤ j ≤ p

xi ≥ 0 ∀ 1 ≤ i ≤ n

This program is equivalent in the sense that an optimal
solution of the first program can easily be deduced from
an optimal solution of the second, and conversely. A
method we can use to produce this second program is as
follows:

• If gi(x) ≤ 0 then add a slack variable si ≥ 0 and set
hi(x) = gi(x) + si = 0.

• If xi ∈ R then add x+
i ≥ 0 and x−

i ≥ 0 and replace
xi by x+

i + x−
i in the program.

• If gi(x) = −xi ≤ 0 then do nothing.

• If gi(x) = xi ≤ 0 then replace xi by −xi in the
program.

The concept of the gap variable can be easily explained
with drawings:

0
x1

x2

•
b/a1

•b/a2

a
1x

1 +
a
2x

2 =
b

(a1, a2)

a1x1 + a2x2 < b

a1x1 + a2x2 + s = b

•
x

≃
s

We use the following notations

hj(x) =

n∑
k=1

(ajkxk)− bj = 0 ∀j ∈ J1; pK

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
ap1 ap2 · · · apn

 b =


b1
b2
...
bp


We then have Ax = b.

3.1 Reduced gradient computation

As in the projected gradient, we assume that we start
at a point x ∈ S that is given. As explained earlier, we
will use the equalities to express some of the variables in
terms of the others. We thus choose a subset B ⊂ J1;nK
of variables of size p, and the remaining variables will be
N . We say that B corresponds to the basic variables and
N to the non-basic variables. We denote

• AB = the columns of A for which the index is in B.

• AN = the columns of A for which the index is in N .

• xB = the variables of x for which the index is in B.

• xN = the variables of x for which the index is in N .

• ∇fB = the coeffs of ∇f(x) for which the index is in
B.

• ∇fN = the coeffs of ∇f(x) for which the index is in
N .

We can rewrite A, x and ∇f(x) this way:

A =
(
AB AN

)
, x =

(
xB

xN

)
,∇f(x) =

(
∇fB
∇fN

)
On suppose que le rang de A est p.

Lemma 3.1. If AB is invertible, it is possible to rewrite
f(x) with only xN with

xB = A−1
B · b−A−1

B ·AN · xN

Proof. We simply need to express the product Ax in
block matrix form.

(
AB AN

)
·
(
xB

xN

)
= b

ABxB +ANxN = b

We obtain the result by multiplying both sides by A−1
B .

Let f̄ : Rn−p → R such that f̄(xN ) = f(xB , xN ). The
reduced gradient is the gradient of f̄ .

t∇f̄(xN ) = − t∇fB ·A−1
B ·AN + t∇fN

5



3.2 Direction computation

This gradient provides a direction to follow in order
to minimize f̄ (one simply needs to follow the oppo-
site of the reduced gradient). However, unlike the pro-
jected gradient, which took into account all active con-
straints, the reduced gradient does not consider the non-
negativity constraints of the variables. Therefore, to ob-
tain a valid direction d, it is necessary to ensure that if
xi = 0, then di ≥ 0.

Given ∇f̄(xN ), we define the direction d, divided in
two parts, dB and dN , this way

∀j ∈ N, dj =

{
0 if ∇f̄(xN )j > 0 and xj = 0

−∇f̄(xN )j otherwise

The direction dN sets to 0 all the components that
would cause a variable xN to become negative when fol-
lowing dN . To obtain dB , simply refer to the constraint
Ax = b.

dB = −A−1
B ·AN · dN

Lemma 3.2. For all α ∈ R, A · (x+ α · d) = b.

Proof.

A · (x+ α · d) = A · x+ α ·A · d
= b+ α · (AB · dB +AN · dN )

= b+ α · (AB · (−A−1
B ·AN · dN ) +AN · dN )

= b

We can therefore follow the direction d without the
risk of violating the constraint Ax = b. It should be
noted that this is not the case for positivity constraints,
which can always be unsatisfied for a basic variable that
follows the direction dB . But we will discuss this point
later.
Before going any further, it is important to ask an im-

portant question here: does the choice of B and N mat-
ter? Is the obtained direction always the same regardless
of this choice? We can answer negatively in three differ-
ent ways:

• We already know that AB must necessarily be in-
vertible to perform this entire process.

• Even assuming AB is invertible for any choice of
basis B, the fact that we reduce certain components
of dN to 0 while not doing so for dB necessarily
implies a break in symmetry. For example, suppose
we only have 2 variables x1 and x2 with x1 = 0,
x2 > 0. And suppose the reduced gradient when
B = (1), N = (2) indicates ∇f̄(x2) = (10). We
then obtain a direction dN = (−10). We calculate
dB and get a value, let’s assume for the example
dB = (−5). We can quickly realize that choosing

N = (1), B = (2) cannot lead to the same direction.
Indeed, for that to happen, we would have to have
∇f̄(x1) = (5). However, in this case, we have dN =
(0) because ∇f̄(x1) > 0 and x1 = 0. Since dN = 0,
then dB = −A−1

B · AN · dN = 0. We obtain here a
null direction.

• Lastly, let’s assume that AB is invertible regardless
of the basis and all variables are strictly positive.
Even in this case, it is also possible to have a dif-
ferent direction depending on the basis. Here’s an
example. Let’s suppose we want to solve the follow-
ing problem:

min x2
1

s.c. x1 + x2 = x3

xi ≥ 0 ∀ 1 ≤ i ≤ 3

A = (1; 1;−1), b = (0)
We assume we start at x = (5, 5, 10). First, let’s con-

sider B = (1), N = (2, 3). We rewrite f as a function
of x2 and x3. We obtain the function f̄ , the reduced
gradient, and the following directions.

f̄(x2, x3) = (x3 − x2)
2

∇f̄(x2, x3) =

(
−2x2

2x3

)
=

(
−10
10

)
dN =

(
10
−10

)
Il faut donc augmenter x2 et diminuer x3 de la même
quantité. Pour savoir quelle direction prend x1 lorsqu’on
suit dN , on calcule dB :

dB = −A−1
B ANdN

= −(1)(1;−1)dN = (−20)

We reorder the variables of the direction to place
x1, x2, x3 in this order. We therefore obtain

d =

−2010
−10


Let us now consider B = (3), N = (1, 2). This time,

rewriting f as a function of x1 and x2 is straightforward,
we have f = f̄ . We obtain the reduced gradient and the
following directions.

f̄(x1, x2) = x2
1

∇f̄(x1, x2) =

(
2x1

0

)
=

(
10
0

)
dN =

(
−10
0

)
dB = −A−1

B ANdN

= −(−1)(1; 1)dN = (−10)

6



We then get

d =

−100
−10


We observe a similar trend but not the same direction.

The same phenomenon repeats if we set B = (2) and
N = (1, 3). This is quite counterintuitive because f̄ and
f are indeed the same function, just written differently.
However, focusing on certain variables rather than others
somewhat prevent us from having the overall vision of the
function. Unlike the projected gradient, which projects
onto certain constraints, here it is as if we are projecting
the function onto a subspace and looking for a direction
within that subspace. In our example, the view in space
would provide the graph below. The color indicates f(x),
which here depends only on x1.

0
1

2
3

4 0

2

4

0

5

10

x1

x2

x
3

0

5

10

15

Calculating the function f in terms of x2 and x3 gives
the same diagram viewed from the side (on the plane
corresponding to these two variables).

0 1 2 3 4
0

2

4

6

8

10

x2

x
3

0

20

40

60

80

100

The plane is tilted because there are certain forbidden
pairs for (x2, x3). Indeed, if for example x2 = 4 and
x3 = 0, then x1 = −4, which is not allowed. By closely

examining the color gradient, we can see that to decrease
f(x) as much as possible, we need to increase x2 and
decrease x3. Now, if we look at another projection.

0 1 2 3 4
0

2

4

6

8

10

x1

x
3

0

5

10

15

In this view, to decrease f(x), one must go left. Be
careful not to be influenced by the view of the plane that
seems tilted (this slope is only due to the forbidden values
of (x1, x3)). By closely examining the color gradient, we
see that the function is constant with respect to x3, so the
opposite of the gradient goes to the left. The direction
along x3 is therefore zero.
It is therefore necessary to carefully choose the basis B

to converge more quickly towards the optimal solution.
This choice is not trivial and there is no miracle method
to obtain it.

The direction d is now chosen, two questions remain
unanswered: what happens if d = 0 and what should be
done if a basic variable becomes negative while following
the direction d?

Lemma 3.3. If d = 0⃗ then, the (KKT) conditions are
satisfied.

Proof. If d = 0⃗ then dN = dB = 0⃗. By the definition of

dN , we have dj = 0 so
t∇f̄(xN )j = 0 or

t∇f̄(xN )j > 0

and xj = 0. In both cases,
t∇f̄(xN )j ≥ 0. In order to

satisfy the (KKT) conditions, one needs to.

∃λi, µj ∈ R
λi ≥ 0 ∀ i ∈ I(x)

∇f(x) +
∑

i∈I(x)

λi∇gi(x) +
p∑

j=1

µj∇hj(x) = 0

7



Equivalently

∃λi, µj ∈ R
λi ≥ 0 ∀ i ∈ J1;mK (1)

λigi(x) = 0 ∀ i ∈ J1;mK (2)

∇f(x) +
∑
i∈I

λi∇gi(x) +
p∑

j=1

µj∇hj(x) = 0 (3)

Here, the inequality constraints are the positivity con-
straints. gi(x) = −xi ≤ 0. Therefore, m = n, we have
one variable λi for each variable xi. Moreover

∇gi(x) =



0
...
0
−1
0
...
0


Moreover, by definition of the matrix A, ∇hj(x) is

the j-th row of the matrix A. We can thus rewrite the
condition (3) as follows:

∇f(x)− λ+ tAµ = 0

We perform a block decomposition according to the basis
B and the non-basic variables N . Since we have a value
λi for each variable xi, we can also decompose this vector
according to B and N . Note that this is not the case for
µ, which are associated with the equality constraints and
not with the variables.(

∇fB
∇fN

)
−
(
λB

λN

)
+

(
tAB
tAN

)
µ = 0

We set λB = 0, and we see if this is sufficient to find a
valid value for λN and µ. Thus, we first have

∇fB + tABµ = 0
tµ = − t∇fBA−1

B

We get a value for µ. If we look at the other equality, we
have

∇fN − λN + tANµ = 0

∇fN − λN + tAN
t
(− t∇fBA−1

B ) = 0

Then

− t∇fB ·A−1
B ·AN + t∇fN = tλN

t∇f̄(xN ) = tλN

We saw at the beginning that
t∇f̄(xN )j ≥ 0 for all

j ∈ N , so tλN ≥ 0. Since λB = 0, the condition (1) of
(KKT) is satisfied.

To conclude, if gi(x) = 0 then λigi(x) = 0. If i ∈ B
then λi = 0. If i ∈ N and gi(x) < 0 then xi > 0 and thus
t∇f̄(xN )i = di. However, since di = 0 by assumption

and since
t∇f̄(xN )i = λi, then λi is zero. Therefore,

λigi(x) = 0. Thus, the condition (2) of (KKT) is also
satisfied. We indeed verify all the conditions of (KKT)
with the values of λ and µ obtained.

3.3 Follow the direction and change of
basis

If the direction is zero, in this case, we stop the algorithm,
we have reached our objective. If the direction is non-
zero, as in the case of the projected gradient, we will
move in the direction d until we reach the optimum in
that direction.

α1 = max
0≤α

(x+ α · d ∈ S)

α2 = arg min
0≤α≤α1

(f(x+ α · d))

However, unlike the projected gradient, we can have
α1 = 0. This is due to the fact that a basic variable
can be zero and the direction to follow for this variable
is negative. We must then proceed with a basis change
(changing the variables in N and B). For this, we will
make one additional assumption in the problem:

Definition 5 (Non-degeneration hypothesis). The hy-
pothesis assumes that, whatever the basis B is, if AB is
invertible, then A−1

B · b > 0.

Let y = x+ αd. If there exists s ∈ B such that ys = 0
; and if we keep the basis for the next iteration, then the
next value of α1 may be 0, we may be stuck.

Lemma 3.4. If there exists s ∈ B such that ys = 0,
then, under the non-degeneration hypothesis, there exists
r ∈ J1;nK such that yr ̸= 0 and AB∪{r}\{s} is invertible.

Proof. Let Ai be the i-th column of A. Let r ∈ N and
s ∈ B such that ys = 0. The matrix AB contains column
As. The matrix AN contains column Ar. Finally, let
B′ = B ∪ {r}\{s}.

Consider the matrix AB′ which is equal to the matrix
AB where column As is replaced by Ar.

AB
−1 ·AB′ =



1 0 · · · q1 · · · 0
0 1 · · · q2 · · · 0
...

...
. . .

... · · ·
...

0 · · · · · · p · · · 0
...

...
...

. . . · · ·
0 · · · · · · qn · · · 1



8



where

AB
−1 ·Ar =



q1
q2
...
π
...
qn


π is called the pivot of r. Note that the position and

value of this pivot in the matrix depend on the position
of As in AB . In particular, the position of the pivot of
r does not depend on r. If s is in the ith column, then
π is in the ith row. The column containing π is simply
calculated with A−1

B Ar. This matrix is invertible if and
only if π ̸= 0. Suppose π ̸= 0, then it can be easily
verified that.

(AB
−1 ·AB′)−1 =



1 0 · · · −q1
π · · · 0

0 1 · · · −q2
π · · · 0

...
...

. . .
... · · ·

...
0 · · · · · · 1

π · · · 0
...

...
...

. . . · · ·
0 · · · · · · −qn

π · · · 1


Finally, we obtain A−1

B′ by (AB
−1 ·AB′)−1 ·AB

−1. To
prove the lemma, it remains to show that there exists a
variable r ∈ N such that yr ̸= 0 and such that π ̸= 0.
We denote in the following B = {s1, s2, . . . , s, . . . , sp}

and N = {r1, r2, . . . , rn−p}. We also denote πi as the
pivot of ri. According to the non-degeneracy hypothesis,
we know that

A−1
B · b > 0

By lemma 3.1

yB +A−1
B ·AN · yN > 0

Since, in the vector A−1
B ·Ar, the pivot of r is always on

the row corresponding to s, we have

ys1
ys2
...
ys
...

ysp


+



qr11 qr21 . . . qrn−p1

qr12 qr22 . . . qrn−p2

...
... . . .

...
π1 π2 . . . πn−p

...
... . . .

...
qr1p qr2p . . . qrn−pp


·


yr1
yr2
...

yrn−p

 > 0

We consider in this equality the line corresponding to s.

ys +

n−p∑
i=1

πiyri > 0

By hypothesis

0 +

n−p∑
i=1

πiyri > 0

If pi is zero for all i such that yri is non-zero, there is a
contradiction. Thus, there exists i such that yri ̸= 0 and
πi ̸= 0.

Remark 3. The beginning of the proof of lemma 3.4
provides a technique to compute AB′ , knowing AB

−1,
without any further complicated matrix inverse calcu-
lations. It is sufficient to compute A−1

B Ar to deduce
(AB

−1 ·AB′)−1, and then multiply this matrix by AB
−1.

This last lemma proves that one can always replace
a dangerous variable with a safe variable in the base,
which helps avoid stagnation in the algorithm.

The pseudo-code of the algorithm is the following:

1: Find x ∈ S and B such that AB is invertible
2: loop

3:
t∇f̄(xN )← − t∇fB ·A−1

B ·AN + t∇fN
4: for j ∈ N do
5: If ∇f̄(xN )j > 0 and xj = 0 then dj ← 0

else dj ← −∇f̄(xN )j

6: dB ← −A−1
B ANdN

7: If d = 0 then return x
8: α1 ← max

0≤α
(x+ α · d ≥ 0)

9: α2 ← arg min
0≤α≤α1

(f(x+ α · d))
10: x← x+ α2 · d
11: if ∃s such that xs = 0 then
12: for r ∈ N by decreasing order of xr do
13: if AB∪{r}\{s} is invertible then
14: B ← B ∪ {r}\{s}
15: Restart the loop line 2

9


	Qualification and optimality conditions
	Projected gradient algorithm
	Detect the boundaries
	Project on the boundaries
	Follow the direction

	Reduced gradient algorithm
	Reduced gradient computation
	Direction computation
	Follow the direction and change of basis


