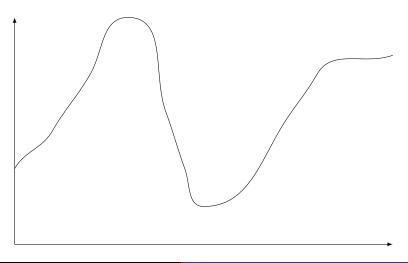
Chapter 6 : Penalty and barrier methods ENSIIE - Operations Research Module

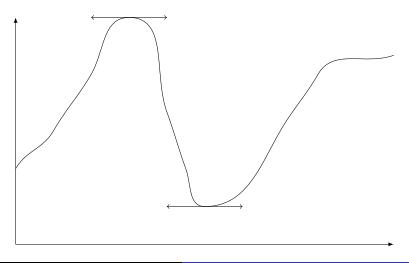
Dimitri Watel (dimitri.watel@ensiie.fr)

2024

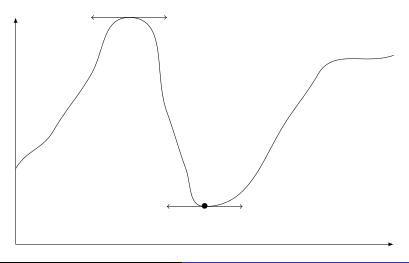
Unconstrainted optimization



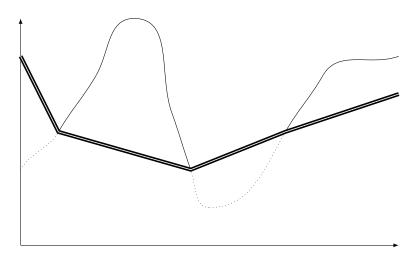
Unconstrainted optimization



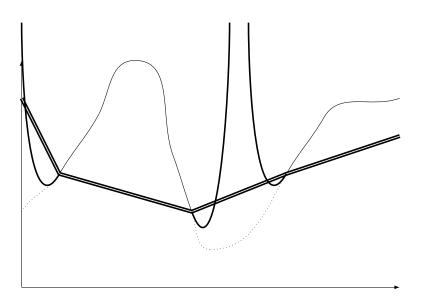
Unconstrainted optimization



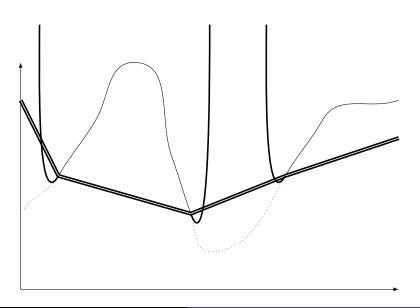
Constrainted optimization



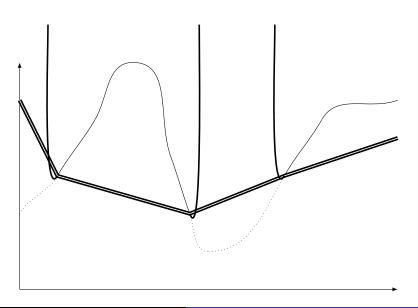
Penalty method

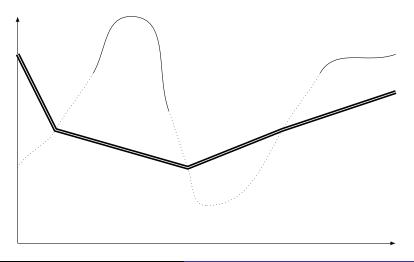


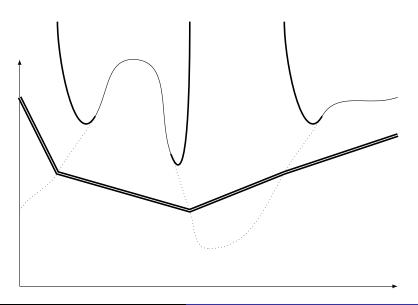
Penalty method

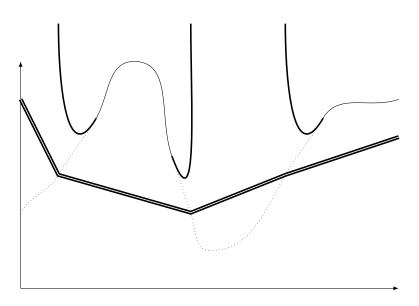


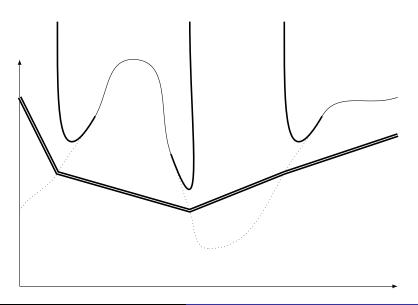
Penalty method











Optimization problem

We want to solve

min
$$f(x)$$
 $x \in \mathbb{R}^n$
 $s.c.$ $g_i(x) \le 0$ $\forall \ 1 \le i \le m$
 $h_j(x) = 0$ $\forall \ 1 \le j \le p$

We set

$$S = \{x | g_i(x) \le 0 \ \forall \ 1 \le i \le m; h_j(x) = 0 \ \forall \ 1 \le j \le p\}$$

We want then to solve

$$\min_{x \in S} f(x)$$

Pénalités et barrière

We want

$$\min_{x \in S} f(x)$$
 et $x^* = \arg\min_{x \in S} f(x)$

Penalties

Let $P: \mathbb{R}^n \to \mathbb{R}$

- P continuous
- $P(x) \ge 0$
- $P(x) = 0 \Leftrightarrow x \in S$

Solve
$$\lim_{\mu \to +\infty} \min_{x \in \mathbb{R}^n} f(x) + \mu P(x)$$

Barrier

Let $B: \mathring{\mathcal{S}} \to \mathbb{R}$

- B continuous
- $B(x) \ge 0$
- $B(x) \to +\infty \Leftrightarrow x$ get close to Fr(S).

Solve $\lim_{\mu \to 0} \min_{x \in \mathring{S}} f(x) + \mu B(x)$

Constraint : \mathring{S} not empty every neighborhood of $x^* \in S$ intersects \mathring{S}

Example of penalties and barriers

Courant-Beltrami Penalty

$$P(x) = \sum_{i=1}^{m} \max(0, g_i(x))^2 + \sum_{j=1}^{p} h_j(x)^2$$

Logarithmic barrier

If
$$-1 < g_i(x) < 0$$
 iff $x \in \mathring{S}$, $B(x) = \sum_{i=1}^{m} -\log(-g_i(x))$

Inverse barrier

If
$$g_i(x) < 0$$
 iff $x \in \mathring{S}$, $B(x) = \sum_{i=1}^{m} \frac{-1}{g_i(x)}$

Example, penalties method

We want to solve

min
$$-x_1^2 - x_2^2$$
 $x \in \mathbb{R}^2$
s.c. $x_1 + x_2 = C$
 $-x_1 + \frac{1}{4} \le 0$
 $-x_2 + \frac{1}{4} \le 0$

Penalty:

$$P(x_1, x_2) = (x_1 + x_2 - C)^2 + \max(\frac{1}{4} - x_1, 0)^2 + \max(\frac{1}{4} - x_2, 0)^2$$

Example, barrier method

We want to solve

min
$$x_1^2 + x_2^2$$
 $x \in \mathbb{R}^2$ $s.c.$ $-x_1 - 2x_2 \le -1$

Barrier:

$$B(x_1,x_2) = -\log(x_1 + 2x_2 - 1)$$

Convergence of the penalty method

We set $q(x,\mu)=f(x)+\mu P(x)$. We assume that f is continuous and admits at least one optimal solution. In addition, for every $\mu>0$, $x_{\mu}=\arg\min_{x\in\mathbb{R}^n}q(x,\mu)$ exists.

Theorem

Let $(\mu_p)_{p\in\mathbb{N}}$ be a strictly increasing sequence. If $(x_{\mu_p})_{p\in\mathbb{N}}$ is convergent then it converges toward an optimal solution.

- $q(x_{\mu_p}, \mu_p) \leq q(x_{\mu_{p+1}}, \mu_{p+1})$
- $P(x_{\mu_p}) \ge P(x_{\mu_{p+1}})$
- $f(x_{\mu_p}) \leq f(x_{\mu_{p+1}})$
- $f(x_{\mu_p}) \leq q(x_{\mu_p}, \mu_p) \leq \min f(x)$

Theorem

If f is coercive then \exists a subsequence of $(x_p)_{p\in\mathbb{N}}$ which is convergent.

Convergence of the barrier method

We assume that f is continuous and admits at least one optimal solution. In addition, for every $\mu > 0$, $x_{\mu} = \arg\min_{x \in \mathring{S}} f(x) + \mu B(x)$ exists.

Theorem

Let $(\mu_p)_{p\in\mathbb{N}}$ be a strictly decreasing sequence toward 0. If $(x_{\mu_p})_{p\in\mathbb{N}}$ is convergent then it converges toward an optimal solution.

- $q(x_{\mu_p}, \mu_p) \ge q(x_{\mu_{p+1}}, \mu_{p+1})$
- $B(x_{\mu_p}) \leq B(x_{\mu_{p+1}})$
- $f(x_{\mu_p}) \ge f(x_{\mu_{p+1}})$
- $\min f(x) \leq f(x_{\mu_p}) \leq q(x_{\mu_p}, \mu_p)$

Theorem

If f is coercive then \exists a subsequence of $(x_{1/p})_{p\in\mathbb{N}}$ which is convergent.