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The penalty and barrier methods are two approaches
that allow transforming a constraint optimization prob-
lem into a series of unconstrained optimization problems,
so that solving these problems leads to finding an opti-
mal solution to the original problem. It will be assumed
that we have a black box capable of efficiently solving an
unconstrained optimization problem.

We want to solve the following problem (O).

(O) :min f(x) x ∈ Rn

s.c. gi(x) ≤ 0 ∀ i ∈ J1;mK
hj(x) = 0 ∀ j ∈ J1; pK

We write S the set of feasible solutions. Another way
to define the problem is the following:

(O) : min
x∈S

f(x)

In the continuation of this course, we will assume that
f , gi, and hj are C1. We also assume that these functions
are defined on all of Rn. We can deduce that S is closed.
This property is used for one of the methods described in
this chapter. These constraints can be relaxed as long as
it does not jeopardize the use of the black box to optimize
the unconstrained versions of our problems.

1 Principle and definition of the
methods

The principle of penalty and barrier methods is to inte-
grate the constraints into the objective function so that
not satisfying these constraints results in a high objective
function value. The two methods have a different way of
achieving this. The penalty method penalizes values x
outside of S. The barrier method prevents x from leaving
S by penalizing it as it approaches the boundary.

1.1 Penalty Method

For this method, we assume that we have a positive con-
tinuous function P : Rn → R such that P (x) = 0 if and
only if x ∈ S. We then solve the following problem Pµ:

(Pµ) : min
x∈Rn

f(x) + µ · P (x)

As we can see, we are now minimizing a function with-
out constraints on Rn. Assuming that µ is large enough,
then the function µP (x) will heavily penalize any value
of x that is not in S. If x is in S, since P (x) = 0, the
function f is not affected, and the optimal solution of
(Pµ) will naturally tend to be an optimal solution of (O)
as we increase µ. The complicated question is what value
to assign to µ so that the penalty is sufficient?

Let’s take the following example where the constraint
is to be above the function with the double line. The
optimal solution x∗ of (O) is indicated in the drawing.

•
x∗

A penalty is applied. We obtain a new function that
can be optimized without constraints. We find the op-
timal solution x◦ below. We notice that this solution is
not in S. This is normal; in the unconstrained problem,
we can return a solution outside of S. The goal of the
penalty is to be sufficiently high to avoid it.
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•
x◦

If we increase the penalty, we obtain a new optimal so-
lution x△, closer to S. The more we increase the penalty,
the closer we will get to S until we converge to x∗.

•
x△

A classic penalty function is the Courant-Beltrami
penalty, described below. If the functions gi and hj are
C1, then P is also C1.

P (x) =

m∑
i=1

max(0, gi(x))
2 +

p∑
j=1

hj(x)
2

1.2 Barrier Method

We denote S̊ as the interior of S. We assume S̊ is non-
empty and that there exists an optimal solution x∗ such
that every neighborhood of x∗ intersects S̊. We assume
we have a function B : S̊ → R that is continuous and
positive, and such that B(x) → +∞ as x approaches the
boundary of S. We then solve the following problem Bµ:

(Bµ) : min
x∈S̊

f(x) + µ · P (x)

We are now minimizing a function without constraints
on S̊. Since B(x) tends to infinity as x approaches the
boundary of S, an optimal solution of Bµ cannot be on
the edge of S. Thus, if the optimal solution x∗ of (O) is
central in S, Bµ makes it easy to find. Assuming that µ
is small enough, the function µB(x) will allow us to find
x∗ even if this solution is close to the boundary. If x∗ is
right on the boundary itself, then the optimal solution
of (Bµ) will naturally tend towards x∗ as we decrease µ.
The complex question is what value should be assigned
to µ so that the barrier is not too penalizing?

Let’s take the same example as for the penalty method,
and apply a barrier. We obtain the new function to opti-
mize. The optimal solution x◦ is marked in the drawing.
As explained earlier, since x∗ is on the boundary, the
barrier prevents us from reaching it.

•
x◦
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If we decrease µ, then the barrier collapses and the
optimal solution approaches x∗.

•x△

Here are two classic barrier functions, namely the log-
arithmic barrier and the inverse barrier.

If −1 < gi(x) < 0 iff x ∈ S̊, B(x) =
m∑
i=1

− log(−gi(x))

If gi(x) < 0 iff x ∈ S̊, B(x) =
m∑
i=1

−1
gi(x)

In general, the penalty method is easier to imple-
ment. This is because optimization occurs over the entire
Rn, whereas it occurs over S̊ in the case of the barrier
method. Furthermore, classical barriers have constraints
that make it not always possible to apply them. How-
ever, the barrier method has an advantage in that for
each value of µ, optimizing Bµ produces a feasible solu-
tion to the problem (O). As can be seen in the previous
example, this is not the case with the penalty method,
which can produce infeasible solutions.

2 Convergence properties of
methods

The convergence properties are similar in both methods.
We will show, in both cases, that these methods, if they
converge, always converge to an optimal solution of (O).
We will then provide a case of a function f where we can
guarantee this convergence.

2.1 Penalty Method

Theorem 2.1. Let P be a penalty function. We assume
that f is continuous and that (O) has an optimal solution
x∗. We also assume that, for any µ > 0, (Pµ) has an
optimal solution xµ. Let (µp)p∈N be a sequence such that
lim

p→+∞
µp = +∞. If (xµp)p∈N converges, then it converges

to an optimal solution of (O).

Proof. We set q(x, µ) = f(x) + µP (x). Let x∞ =
lim

p→+∞
xµp

. Since the sequence (xµp
)p∈N converges to x∞

and since f is continuous on Rn, then

lim
p→+∞

f(xµp) = f(x∞) (1)

We will show that f(x∞) ≤ f(x∗) and that x∞ is
feasible.

As xµ = arg min
x∈Rn

q(x, µ)

q(xµp
, µp) ≤ q(x∗, µp)

However x∗ ∈ S, donc P (x∗) = 0

q(xµp
, µp) ≤ f(x∗)

f(xµp
) + µp · P (xµp

) ≤ f(x∗) (2)

P (xµp
) ≤

f(x∗)− f(xµp)

µp

However lim
p→+∞

µp = +∞ et By (1)

lim
p→+∞

f(x∗)− f(xµp)

µp
= 0

Since the function P is positive, the sequence P (xµp
)p∈N

is bounded between two sequences converging to 0.
Therefore, this sequence also converges to 0. Since P
is continuous on Rn, then

lim
p→+∞

P (xµp
) = P (x∞) = 0

So x∞ ∈ S. Since P (xµp
) and µp are positive, and by

(2)

f(xµp
) ≤ f(x∗) (3)

So, since f is continuous

f(x∞) ≤ f(x∗) (4)

(5)

Then x∞ is optimal solution of (O).

We provide below a case where convergence is guar-
anteed. We recall that a coercive function is a function
such that lim

∥x∥→+∞
f(x) = +∞.

Theorem 2.2. If f is coercive and if (O) admits an op-
timal solution x∗, then, for all µ, (Pµ) admits an optimal
solution xµ and there exists a subsequence of (xp)p∈N that
converges.

Proof. We set q(x, µ) = f(x) + µP (x). If f is coercive,
since q(x, µ) ≥ f(x), then q is also a coercive function
with respect to x, for any fixed µ. Moreover, every con-
tinuous coercive function has a global minimum, so (Pµ)
has an optimal solution xµ.
Furthermore, due to coercivity, the norm of xµ is

bounded. Applying the Bolzano-Weierstrass theorem, we
obtain the desired result.
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2.2 Barrier Method

Theorem 2.3. Let B be a barrier function. We assume
that f is continuous and that (O) has an optimal solution
x∗. We also assume that for every µ > 0, (Bµ) has an
optimal solution xµ. Let (µp)p∈N be a strictly decreasing
sequence converging to 0. If (xµp

)p∈N converges, then it
converges to an optimal solution of (O).

Proof. We define q(x, µ) = f(x) + µB(x). Let x0 =
lim

p→+∞
xµp

. Since the sequence (xµp
)p∈N converges to x0

and since f is continuous on Rn, then

lim
p→+∞

f(xµp
) = f(x0) (6)

Given that the barrier method optimizes on S̊, we have
xµp ∈ S̊. Recall that S is closed and thus x0 ∈ S. It
remains to demonstrate that f(x0) = f(x∗).

First, let’s show that there is a limit to (q(xµp
, µp))p∈N

as p tends to infinity. To do this, we will show that this
sequence is bounded and decreasing.

q(xµp
, µp) = f(xµp

) + µpB(xµp
)

≥ f(x∗) + µpB(xµp
) ≥ f(x∗) (7)

It is indeed bounded, let’s show that it is decreasing.

q(xµp , µp) = f(xµp) + µpB(xµp)

Since (µp)p∈N is decreasing.

≥ f(xµp
) + µp+1B(xµp

) = q(xµp
, µp+1)

As xµp+1 = argmin
x∈S̊

q(x, µp+1)

≥ q(xµp+1
, µp+1) (8)

By (7) and (8), there exists a limit Q to the sequence
(q(xµp

, µp))p∈N. Now let x ∈ S̊.

q(xµp
, µp) ≤ f(x) + µpB(x)

Since (µp)p∈N converges to 0 as p tends to infinity.

Q ≤ f(x) (9)

Since f is continuous on Rn, for every ε > 0, there
exists a neighborhood V of x∗ such that, for all x ∈ V ,
f(x) ≤ f(x∗) + ε. At the beginning of the presentation
of the method, in section 1.2, we assumed that every
neighborhood of x∗ intersects S̊. Therefore, there exists
x ∈ S̊ such that f(x) ≤ f(x∗) + ε. From (7) and (9), we
deduce that, for all ε > 0,

f(x∗) ≤ Q ≤ f(x∗) + ε

f(x∗) = Q

To conclude

µpB(xµp
) = q(xµp

, µp)− f(xµp
)

By 6

lim
p→+∞

µpB(xµp
) = Q− f(x0) = f(x∗)− f(x0)

However µpB(xµp) ≥ 0 for all p ∈ N, so

f(x∗)− f(x0) ≥ 0

Then x0 is an optimal solution of (O).

Remark 1. The continuity of B is not used in this proof.
But it is easier to use unconstrained optimization algo-
rithms whith this property.

Theorem 2.4. If f is coercive then ∃ a subsequence of
(x1/p)p∈N which is convergent.

Proof. The proof is the same than the one for Theorem 2.
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