Chapitre 7 : Chaînes de Markov ENSIIE - Module de Recherche Opérationnelle

Dimitri Watel (dimitri.watel@ensiie.fr)

2024

Variable aléatoire et processus

Définition

Une variable aléatoire X est une fonction qui prend des valeurs dans un ensemble S d'états.

Par exemple, un lancé de dé a pour valeur $X \in S = \{1, 2, 3, 4, 5, 6\}$.

Définition

Un processus stochastique est une famille de variables aléatoires $(X_t)_{t\in\mathcal{T}}$ où $\mathcal{T}\subset\mathbb{R}^+$.

T est le *temps*, X_t est l'état de X à l'instant t.

Par exemple, on fait un lancé de dé toutes les secondes, X_t est la face du dé après t secondes.

Processus Markovien et processus homogène

Définition

Un processus $(X_t)_{t \in T}$ est *Markovien* si et seulement si *le futur* dépend uniquement du présent :

$$\forall t_1 < t_2 < \cdots < t_n < t_{n+1} \in T, \ \forall A \subset S$$

$$P(X_{t_{n+1}} \in A | X_{t_1}X_{t_2}, \dots, X_{t_n}) = P(X_{t_{n+1}} \in A | X_{t_n})$$

Définition

Un processus $(X_t)_{t\in\mathcal{T}}$ est homogène si et seulement si les probabilités conditionnelles ne dépendent pas du temps :

$$\forall t, t' \in T, s > 0 \backslash t + s, t' + s \in T, A \subset S$$

$$P(X_{t+s} \in A|X_t) = P(X_{t'+s} \in A|X_{t'})$$

Chaîne de Markov

Définition

Une **chaîne de Markov** est un processus stochastique $(X_t)_{t \in T}$ Markovien, homogène et où T est dénombrable.

De plus, on suppose dans toute la suite que S est fini et discret.

$$T = \mathbb{N}$$

Processus :
$$X_1, X_2, \dots, X_t, \dots$$

$$\mathsf{Etats}:\, 1,2,\dots,|\mathcal{S}|$$

Probabilité de transition

Définition

On appelle p_{ij} la probabilité que le système passe de l'état i à l'état j en un pas de temps. Cette probabilité ne dépend pas du moment $t \in \mathcal{T}$ où le système est dans l'état i.

$$\forall i,j \in S, \exists p_{ij} \setminus \forall t \in \mathbb{N} \quad P(X_{t+1} = j | X_t = i) = p_{ij}$$

Matrice de transition :

$$P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1j} & \cdots & p_{1|S|} \\ p_{21} & p_{22} & \cdots & p_{2j} & \cdots & p_{2|S|} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots & p_{i|S|} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ p_{|S|1} & p_{|S|2} & \cdots & p_{|S|j} & \cdots & p_{|S||S|} \end{pmatrix} \quad \begin{vmatrix} 1 \\ 2 \\ \vdots \\ | 5 \\$$

Propriété

La somme des éléments d'une ligne de P fait 1.

$$\sum_{j=1}^{|S|} p_{ij} = 1$$

Propriété : p-transitions

$$(P^2)_{ii} = P(X_{t+2} = j | X_t = i)$$

$$(P^3)_{ij} = P(X_{t+3} = j | X_t = i)$$

$$(P^p)_{ij} = P(X_{t+p} = j | X_t = i)$$

Vecteur de distribution de probabilités des états

<u>Dé</u>finition

On appelle $Q(t) = (q_1(t), q_2(t), \dots, q_{|S|}(t))$ le vecteur de distribution de probabilités des états. $q_i(t)$ est la probabilité $P(X_t = i)$.

$$\sum_{i=1}^{|S|} q_i(t) = 1$$

$$Q(t) = Q(t-1) \cdot P$$

$$Q(t) = Q(t-2) \cdot P^{2}$$

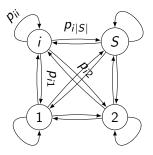
$$Q(t) = Q(0) \cdot P^{t}$$

Graphe de la chaîne de Markov

Définition

Le graphe G=(V,A) d'une chaîne de Markov est un **graphe** orienté où chaque nœud est un état de S (donc V=S), et chaque arc reliant i à j est valué avec p_{ij} . On ne met pas un arc sur $p_{ij}=0$

Remarque : le graphe contient des boucles.



Remarque

 $(P^p)_{ij} > 0$ s'il existe un chemin avec p arcs entre i et j dans G.

Classification des états.

Etats accessibles

Un état j est dit *accessible* depuis l'état i s'il existe un **chemin** de i vers j dans G.

$$\exists p \backslash (P^p)_{ij} > 0$$

Etats communiquant

Deux états i et j sont dits communiquant si chacun est accessible depuis l'autre.

Classe d'états communiquant

Une classe d'états communiquant est une composante fortement connexe de G, autrement dit un ensemble maximal d'état communiquant deux à deux.

Chaîne irréductible

Une chaîne irréductible a une unique classe d'états communiquant.

Etats transitoires et récurrents

Définition

Un état i est transitoire si il existe un état j accessible depuis i tel que i n'est pas accessible depuis j.

Il est possible de quitter un tel état sans jamais pouvoir revenir.

Définition

Un état i est permanent ou récurrent si pour tout état j accessible depuis i, i est accessible depuis j.

Il est toujours possible de revisiter un état permanent.

Définition

Un état i est absorbant si $p_{ii} = 1$.

Propriété

Théorème

Dans une classe d'états communiquants, tous les états sont permanents ou tous les états sont transitoires.

Périodicité d'un état

 $(P^p)_{ii} > 0$ s'il existe un circuit avec p arcs de poids non nul passant par i.

Soit
$$d_i = PGCD(n \setminus (P^n)_{ii} > 0, n > 0)$$
.
(Avec $d_i = 1$ si $(P^n)_{ii} = 0 \quad \forall n$.)

Définition

Un état i est dit *périodique* si $d_i > 1$, apériodique sinon. d_i est la *période* de l'état i.

Propriété

Un état absorbant est apériodique.

Théorème

La période de tous les états d'une même classe d'états communiquant est la même.

Distribution limite

Définition

Une chaîne est dite *régulière* si elle admet une distribution limite indépendante de l'état initial: $Q^* = \lim_{t \to +\infty} Q(t)$ ne dépend pas de Q(0).

Théorème

Une chaîne est régulière si et seulement si tous les états récurrents sont dans la même classe et si ces états sont tous apériodiques.

Théorème

Si une chaine est régulière, P^p admet une limite $\lim_{p\to +\infty}P^p=P^*$ où toutes les lignes sont égales à Q^* .

(preuve au tableau)

Calculer la distribution Q^*

Pour cela, soit on utilise le système suivant :

$$Q(t+1) = Q(t) \cdot P \Rightarrow Q^* = Q^* \cdot P$$

EΤ

$$\sum_{i=1}^{|S|} q_i^* = 1$$

Soit on calcule P^* .