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In this chapter, we will see how it is possible to model
certain specific random behaviors in the form of Markov
chains, that are graphs augmented with probabilities.
The properties of these graphs will then make it possible
to deduce information about the system. Applications of
chains are generally fault finding in a system, estimation
of the position of a population in a set of states, and,
as we will see in the associated chapter, queuing mod-
eling. From the information on these systems, we can
deduce an appropriate action which will not depend on
the probabilistic aspects of the systems.

1 Definitions

1.1 Stochastic process and Markov chain

Definition 1. A random variable X is a S-valued func-
tion where S is a set of states. A stochastic process is
a family (Xt)t∈T of random variables where T ⊂ R+.

For example, you can think of the weather as a random
phenomenon. On day t, Xt will be the random variable
representing the weather for that day, there will be some
probability of seeing this variable occuring in the form
of good weather, rain, gloomy weather, . . . . We consider
the sequence of variables as a stochastic process.

Some processes have particular properties. The first
is that of a Markovian process, it is a process without
memory, where knowing the last state of the process at
time t is sufficient to deduce the probabilities of comple-
tion at the next time. Before going into the definition,
here are three examples.

Suppose you have two bags. The first contains n1

white and m1 black balls respectively. The second con-
tains n2 white and m2 black balls respectively. In the
first round, we draw from bag 1. On each subsequent
round, if the last ball drawn is white, we draw from bag
1, otherwise we draw from bag 2. Once a ball has been
drawn, we put the ball back in his bag. In this case, we
indeed have a Markovian process. Only the last ball is
important. If it is white, we have a probability n1

n1+m1
of

drawing white and m1

n1+m1
of drawing black. If it is black,

we have a probability n2

n2+m2
of drawing white and m2

n2+m2

of drawing black. Knowing whether the balls before were
white or black gives us no additional information.

Suppose you have a single bag filled with n white and
m black balls. You draw from it then put the ball back
in the bag before starting again. In this case, each draw
is independent, you have the same probability n

n+m of
drawing white and m

n+m of drawing black. This example
is an extreme version of a Markovian process. It is not
even necessary to know the last ball to determine the
probability of the next draw.

Finally, suppose you have a single bag filled with n
white and m black balls. You draw from it but don’t
put the ball back in the bag before starting again. In
this case, each draw depends on all the previous ones.
Without knowledge of these previous draws, you do not
know how many balls are left in the bag and therefore
you cannot deduce the probabilities of drawing in the
next round.

Definition 2. We say a process (Xt)t∈T is amarkov pro-
cess if and only if the futur depends only on the present
:

∀t1 < t2 < · · · < tn < tn+1 ∈ T , ∀A ⊂ S

P (Xtn+1
∈ A| Xt1Xt2 , . . . , Xtn) = P (Xtn+1

∈ A| Xtn)

A Markovian process means that the function
P (Xtn+1

∈ A|Xt1Xt2 , . . . , Xtn) does not depend on the
state of the variables Xt1Xt2 , . . . , Xtn−1 . It is a function
that only depends on the state of Xtn . It is a memo-
ryless process. It looks at what state it is in at a given
time, and this defines the random variable of the next
state. Please note, knowing the realization of Xtn is not
enough to know that of Xtn+1

but is enough to know the
probabilities of realization of this variable.

The second important property of Markov chains is ho-
mogeneity. This means that the probabilities do not vary
over time. The first 2 examples with the bags of balls are
homogeneous. If, on the other hand, in each round, you
add a black ball and a white ball to the bags, the proba-
bilities will vary over time (until reaching approximately
0.5 in this case). This process is therefore not homoge-
neous. Let’s consider another example. If you have a car
that breaks down regularly. We model the fact of break-
ing down with a process: this car, when it breaks down
one week, has a probability 0.5 of breaking down again
the following week. If it is not broken, then it has a 0.01
probability of breaking down the following week. This
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process is a Markovian process (only the state of the car
the previous week is important) and it is homogeneous
(the probabilities do not depend on the week in which we
look to see if it will break down). Now suppose that the
model is the following: when it breaks down one week t,
has a probability 1− 0.5e−t of breaking down again the
following week. If it is not broken in week t, then it has
probability 0.01 of breaking down the following week. So
the later the car breaks down, the more likely it is to
stay broken down for a long time. This process is not
homogeneous. On the other hand, it is still Markovian.

Definition 3. We say a process (Xt)t∈T is a time-
homogeneous process if and only if the conditional prob-
abilities does not change when the time grows :

∀t, t′ ∈ T, s > 0\t+ s, t′ + s ∈ T,A ⊂ S

P (Xt+s ∈ A|Xt) = P (Xt′+s ∈ A|Xt′)

We can now define a Markov chain.

Definition 4. A Markov chain is a time-homogeneous
process and a Markov process (Xt)t ∈T .

In the following, we will consider a simple case of
Markov chain where the time T is countable and where
the state space S is finite and discrete. But it should be
noted that the definitions in this course generalize to the
case where time is continuous and to the case where the
state space is continuous.

1.2 Characterization by a graph

Taking into account the homogeneity and the fact that
a Markov chain is a Markovian process, we observe that,
knowing the realization of the variableXt, we can deduce
the probabilities of realization of the variable Xt+1. This
probability does not depend on iteration t.

Definition 5. pij is the probability for the system to
move from the state i to the state j in one step. This
probabilty does not depend on the moment t ∈ T when
the state of the system is i.

∀i, j ∈ S, ∃pij \ ∀t ∈ N P (Xt+1 = j|Xt = i) = pij

P =

1 2 j |S|



p11 p12 · · · p1j · · · p1|S| 1
p21 p22 · · · p2j · · · p2|S| 2
...

...
. . .

...
. . .

...
pi1 pi2 · · · pij · · · pi|S| i
...

...
. . .

...
. . .

...
p|S|1 p|S|2 · · · p|S|j · · · p|S||S| |S|

We can already note an interesting property of the
matrix P . It is called stochastic because the sum of the
elements of a line is equal to 1.

|S|∑
j=1

pij = 1

Definition 6. The graph G = (V,A) of a Markov chain
is a directed graph where every node is a state S (thus
V = S), and every arc linking i to j is weighted with pij .
An arc is not added if pij = 0.

1 2

i S
p
i1

p
i2

p ii pi|S|

It is possible to deduce more complex transition prob-
abilities from P .

Theorem 1.1. Let k ∈ N then P (Xt+k = j|Xt = i) =
P k
ij.

Remark 1. It may seem strange to consider this probabil-
ity knowing that, in the examples of Markovian processes
in the previous section, much emphasis was placed on the
fact that only the last realization, Xt+k−1, was necessary
to know the probability of realization ofXt+k. But that’s
because our examples are imprecise. If we look closely
at the definition of Markovian process, we do not say
that only the realization of the previous iteration makes
it possible to deduce probabilities, we say that if we are
aware of several realizations, then only the last one is
useful. In other words, if we know the realization of Xt

and that of Xt+k−1 then the knowledge of Xt is super-
fluous. But if we do not know Xt+k−1 we will still be
able to get (less precise) information from Xt.

Proof. Let us prove this theorem by induction on k. Let
us denote Rkij = P (Xt+k = j|Xt = i). Let us show that
Rk = P k for all k.
If k = 0 then the probability of being in state j at

iteration t knowing that one is in state i is 1 if i = j and
0 otherwise. So R0 = I = P 0. So the property is well
proven for k = 0.

Now suppose the property is proven for some value
k − 1. According to the law of total probabilities:

Rkij =
∑
s∈S

P (Xt+k = j|Xt+k−1 = s) ·Rk−1,is

=
∑
s∈S

Psj ·Rk−1,is
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By induction hypothesis

Rkij =
∑
s∈S

Psj · P k−1
is

= P k
ij

1.3 State probability distribution vector

We wish to study qi(t) = P (Xt = i). We denote by
Q(t) the vector of probabilities qi(t). We can notice that
it is not possible to deduce Q(t) from P only. A simple
reason is that Q depends on t so P is constant. However,
knowing Q(t) allows knowing Q(t+ k) for all k ∈ N.
Consider now the following chain:

1 2

3

1

1

0.5

0.
5

Without additional information, it is not possible to
know what the probability of X(t) occurring is. Let
us suppose that we know, by some indirect means, this
probability when t = 0. We know that at the start of
the chain, we have a probability q1(0) = 0.25 of being in
state 1, q2(0) = 0.5 of being in state 2 and q3(0) = 0.25
to be in state 3. Another way to see these probabili-
ties is to suppose that we are studying a population with
many individuals, for example 1000000 people. There
would then be at the beginning 250,000 people in state
1, 250,000 people in state 3 and 500,000 people in state 2.
Obtaining the probabilities Q(0) is then done just with
statistical counting, the realization of X(0) is then only a
random person from the population. After one iteration
of the chain, anyone who was in state 1 moves, with prob-
ability 1, to state 2. Likewise, anyone in state 2 moves to
3. Finally, anyone in 3 has a one in two chance of moving
to state 1 or state 2. We would therefore have at the end
of this move, 125, 000 people in state t1, 375, 000 in state
2 and 500, 000 in state 3, i.e. Q(1) = (0.125, 0.375, 0.5).
We can finally note the following property: if we multiply
Q(0) by P , we obtain Q(1).

(
0.25 0.5 0.25

)
·

 0 1 0
0 0 1
0.5 0.5 0

 = (0.125, 0.375, 0.5)

Thus the knowledge of Q(0) allows us to deduce Q(1)
using P . This property can be generalized and demon-
strated.

Theorem 1.2. Let k ∈ N then Q(t+ k) = Q(t) · P k.

Proof. The proof is very similar to that of theorem 1.1.
It is proven by induction and uses the law of total prob-
abilities.

Warning: to calculate Q(t + k), you must multiply
Q(t) by P k and not the other way around.

2 Stationnary distribution and
limit distribution

Thus, by continuing the calculations of the previous ex-
ample, we can obtain Q(t) for all t starting from Q(0).
This property is interesting but requires us to know Q(0)
to have information. However, we can notice a surprizing
detail. If we calculate Q(1000), we obtain

Q(0) · P 1000 =
(
0.2 0.4 0.4

)
Now suppose we start with another initial vector, say

Q′(0) =
(
0.33, 0.33, 0.33

)
. If we calculate Q′(1000), we

obtain

Q′(0) · P 1000 =
(
0.2 0.4 0.4

)
We can start again with other initial vectors, we will

always come across the same vector. To be exact, they
are not the same vector but very close vectors to the
point so that very high precision is necessary to differ-
entiate them. But it seems that, whatever the initial
probability vector, the distribution always converges to
the same vector. This property is interesting because it is
no longer necessary to know the initial population distri-
bution vector, it is enough to execute enough iterations
to transform any distribution into its limit distribution.
In the rest of this section, we will characterize the chains
which have such a limit distribution, and we will de-
scribe a method for calculating it. An interesting thing
to note is that the characterization goes purely through a
characterization of the chain graph, without taking into
account the probability values on the arcs.

2.1 States classification

The concepts used in Markov chains that are described
here are the same as those used in graph theory, although
the vocabulary differs. In the following, we consider a
chain whose graph is G.

Definition 7. A state j is accessible from i if there is a
path from i to j in G.

∃k\(P k)ij > 0

Definition 8. Two states i and j are said communicat-
ing if i is accessible from j and conversely.

Definition 9. A communicating class is a strongly con-
nected component of G. In other words, it is a maximal
set of pairwise communicating states.

Definition 10. A state i is transient if there is a state
j such that j is accessible from i but i is not accessible
from j.

Definition 11. A state i is recurrent if for every acces-
sible state j from i, i is accessible from j.
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We consider the following example.

1 2

34

5

6

7

8

• All states are accessible from 1

• Only 5, 6 and 7 are accessible from 5.

• 1 and 3 communicate because each is accessible from
the other.

• This chain has three communicating classes: 1234,
567 and 8.

• 1, 2, 3 and 4 are transient. Indeed, from any of these
states, we can reach for example state 5. But from
state 5 it is impossible to return to these 4 states.
Attention, one might believe that 1 is not transient
because from 1, we must necessarily reach 2, from
which we can reach 1 again. But the definition does
not speak of direct transition, it speaks of accessi-
bility. From 1, we can reach 2 then 5. So there is a
possibility that 5 will be reached, and once this pos-
sibility is achieved, it is no longer possible to return
to 1.

• 5, 6, 7 are recurrent. Indeed, from each of these
states, we can only reach 5, 6 and 7. We can there-
fore always return to the starting position.

• 8 is also recurrent, because no state is accessible
from 8 except itself.

We can quite easily distinguish between transient and
recurrent states in the following way. Create a new graph
Gc. In this graph, add one node per communicating class
ofG. Add inGc an arc between two nodes u and v if there
exists in G an arc connecting the class corresponding to
u and the one corresponding to v. In the previous chain,
this would result in the following graph:

1234

567

8

We call Gc the contraction of G. This graph has two
interesting properties:

Theorem 2.1. Let Gc be the contraction of G then Gc

is acyclic and a state of G is recurrent if and only if the
node corresponding to its communicating class in Gc is
a well.

Proof. If Gc contains a circuit between the nodes
u1, u2, . . . , up whose associated p communicating classes
are C1, C2, . . . , Cp, then it exists in G a circuit D passing
successively through the nodes of C1, C2, . . . , Cp then re-
turning to C1. Let v be a node of C1 ∩ D and w be a
node of C2 ∩D, then, since D is a circuit, v is accessible
from w and vice versa. So the two communicate. Since
all states of C1 communicate with v and all states of C2

communicate with w then all states of C1 communicate
with all states of C2. So C1∪C2 is a set of communicating
states, which means that C1 and C2 were not maximal.
This contradicts the fact that these were classes of com-
municating states. There is therefore a contradiction, so
Gc is acyclic.

Let a well u of Gc and C be the associated communcat-
ing class. Let v ∈ C. Since there is no arc coming out of
u in Gc then no state outside of C is accessible from v.
So if w is accessible from v, then w ∈ C. But w and v
communicate so v is accessible from w. So v is recurrent.

Let a node u of Gc which is not a sink and C be the
associated communicating class. Let v ∈ C. Since u is
not a sink, there exists a neighbor u′ of u in Gc. Let C

′

be the associated class. There exists between C and C ′

an arc (w,w′). Since w ∈ C then v and w communicate.
So w is accessible from v. Since there is an arc from w to
w′ then w′ is accessible from v. Since Gc does not contain
any circuit, then there does not exist in Gc a path from
u′ to u. So there cannot exist a path in G from w′ to v.
So v is not accessible from w′, so v is transient.

2.2 Period of a state

The period of a state measures the ability of a chain
to periodically return the population to a state it left.
Consider the following two examples.

G G′

1 2

34

1 2

34

Assuming that the probabilities are 1 everywhere ex-
cept for edges leaving state 1 where they are fixed at 0.5,
and assuming that the initial state Q(0) (left) and Q′(0)
(right) check q1(0) = q′1(0) = 1 and qi(0) = q′i(0) = 0 for
i > 1, we obtain the following results:
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Q(1000) = (0.28, 0.14, 0.28, 0.28)

Q(1001) = (0.28, 0.14, 0.28, 0.28)

Q(1002) = (0.28, 0.14, 0.28, 0.28)

Q(1003) = (0.28, 0.14, 0.28, 0.28)

Q′(1000) = (0.67, 0, 0.33, 0)

Q′(1001) = (0, 0.33, 0, 0.67)

Q′(1002) = (0.67, 0, 0.33, 0)

Q′(1003) = (0, 0.33, 0, 0.67)

We see that, in Q′, a regularity appears with a period
2. We could consider that Q is also regular with a period
1. We nevertheless say that, in this case, Q is aperiodic
although Q′ is periodic.
To understand this notion of periodicity, it is necessary

to understand that we are talking here about a period-
icity in the probabilities and not in the realizations of
these probabilities. Thus, if a population is placed on
state 1 of the chain whose graph is G′, then after 1000
iterations, we will see that the population makes a reg-
ular movement on the chain. On even iterations, there
will be people on states 1 and 3 (with about 2 times as
many in state 1). On odd iterations, these people will
be in states 2 and 4 (with about twice as many people
in state 4). But this does not mean that every member
of the population will have periodic movement. On the
scale of the individual, we will not be able to see any-
thing. It is only at the population level that we see this
period emerging.
Let us now formally define this period. It can be noted

that (P k)ii > 0 if there exists a circuit with k arcs of
weight non zero going through i.

Definition 12. Let di = GCD(k|(P k)ii > 0, k > 0)
with di = 1 if (P k)ii = 0 ∀k.) A state i is said to be
periodic if di > 1. Otherwise, the state is aperiodic. di
is the period of i.

In other words, the period of a state is the GCD of
the sizes of all circuits passing through that state. In
the two previous examples, in G, the state 1 is contained
in two circuits of size 3 and 4, the circuits 1231 and
12341. There are other circuits containing 1 but the GCD
of all these circuits cannot be different from 1 since it
is the only common divisor of 3 and 4. In G′, there
exists an infinity of circuits passing through 2: circuits
23412, 234123412, 2341412, 23414123412, . . . . We can see
that the sizes of these circuits cover all even numbers
starting from 4. There is no circuit of odd size containing
2. So the period of state 2 is PGCD(4, 6, 8, . . . ) =2. By
applying the same process, one could show that all the
states of G are aperiodic and all the states of G′ are
periodic with period 2.

Theorem 2.2. Let u and v be two states of the same
communicating class then u and v have the same period.

Proof. Let du be the period of u, let us show that the
period dv of v is greater than du. By symmetry, we can
deduce that they are equal. Since u and v communicate,
there exist paths from u to v and from v to u. For each
path P1 from u to v and each path P2 from v to u, we
can construct a circuit with P1 followed by P2. This
circuit passes through u therefore |P1|+ |P2| is divisible
by du. Now let us consider a circuit C passing through
v. Consider the circuit consisting of P1 then C then P2,
it is a circuit passing through u. So |P1| + |P2| + |C| is
divisible by du. We deduce that |C| is also divisible by
du. So all the sizes of the circuits passing through v are
divisible by du so their GCD is at least du.

u v

P1

P2

C

2.3 Regular chain

The theorems demonstrated here are not all gen-
eralizable to the case where the state space is
infinite.

Definition 13. A distribution Q is said to be stationary
if Q = QP . A Markov chain is said to be regular if there
exists a stationary distribution Q∗ such that, whatever
the initial distribution vector Q(0), lim

t→+∞
Q(t) exists and

is worth Q∗.

One can note that only stationary distributions can
satisfy the second property. We will show in this last
part that it is possible to characterize regular chains.

Lemma 2.1. A chain that contains two or more recur-
rent communicating classes is not regular.

Proof. Suppose the chain has at least two recurrent com-
municating classes C1 and C2. Let i1 ∈ C1 and i2 ∈ C2.
By definition, only the states of C1 are accessible from
(and communicate with) i1. So if Q(0) is the vector such
that qi1(0) = 1 and qj(0) = 0 for any other state j then,
for all t ≥ 0 , there exists j ∈ C1 such that qj(t) ̸= 0.
Likewise, only the states of C2 are accessible and com-
municate with i2. So if Q′(0) is the vector such that
q′i2(0) = 1 and q′j(0) = 0 for any other state j then, for
all t ≥ 0 and all j ∈ C1, qj(t) = 0. Thus, if these limits
exist, we have lim

t→+∞
Q(t) ̸= lim

t→+∞
Q′(t). The chain is

therefore not regular.

Lemma 2.2. A chain that contains a recurrent commu-
nicating class whose states all have period d > 1 is not
regular.
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Proof. Suppose the chain has a recurrent communicating
class C whose states have period d. Let us assume with-
out loss of generality that 1 ∈ C. We denote by N(i)
the states whose distance from 1 (the shortest path in
number of arcs) is worth i modulo d (it is written k ·d+ i
where k ∈ N). Thus 1 ∈ N(0), any state at a distance
3 · d is in N(0), any state at a distance d+ 2 is in N(2)
assuming d > 2 . . .
Note that a state of N(i) can only be connected with

an arc to a state of N(i + 1). Otherwise there would
exist a circuit passing through 1 whose size would not be
divisible by d. The proof is similar to that of theorem 2.2.

Now consider Q(0) the vector such that q1(0) = 1 and
qj(0) = 0 for all j ̸= 1. Since C is a recurrent class, the
only states that communicate with 1 are those of C. So,
for all t,

∑
j∈C qj(t) = 1. Finally, we can notice that if

t ≡ i[d] then only the states of N(i) can check qi(t) > 0
and therefore

∑
j∈N(i) qj(t) = 1. So, for example at iter-

ations d, 2d, 3d, . . . , kd, the entire population is concen-
trated in N(0). And at iterations d+1, 2d+1, . . . , kd+1,
the entire population is concentrated in N(1). Since
N(0) ̸= N(1), it is therefore not possible that lim

t→+∞
Q(t)

exists. So the chain is not regular.

Proving that the properties of the two previous lem-
mas are equally necessary is not very complicated but
would require introducing many more notions to be well
written. Here we give a very useful intermediate result
and the reference to the complete proof.

Lemma 2.3. If Q is a stationary distribution then, for
any transient state i, qi = 0.

Remark 2. One way to understand this lemma is to no-
tice that, at each step, there is a non-zero probability
of moving from the set of transient states to a recurrent
state. So, the population in the transient states will be
emptied little by little. It is necessary to demonstrate
that this decrease converges towards 0.

Proof. Let T be the set of transient states and R be
the set of permanent states. Let us divide Q and the
transition matrix P into blocks.

Q =
(
QT QR

)
P =

(
PT PTR

0 PR

)
By definition of transient state, the probability of go-

ing fromR to T is zero. SinceQ = QP thenQT = QTPT .
Finally, note that I − PT is an invertible square matrix
(its inverse is equal to

∑
n∈N Pn

T ). So QT = 0.

So it is not necessary to look at the transient states.

Theorem 2.3. If a chain has a unique aperiodic recur-
rent communicating class then it is regular.

Proof. The proof can be found for example in Theo-
rem 4.9 of David A Levin and Yuval Peres. Markov

chains and mixing times. Vol. 107. American Mathe-
matical Soc., 2017. url: https://pages.uoregon.

edu/dlevin/MARKOV/. Taking a look at section 1.5 first
may be helpful.

2.4 Compute Q∗

How to calculate Q∗ knowing the regularity of the chain?
There are two methods. The first deduction from the
proof of theorem 2.3 consists of calculating the limit of
P t. We can then notice that this matrix converges to the
matrix where all the rows are equal to Q∗. The second
method is to remember that Q∗ is stationary. It therefore
checks Q∗ = Q∗P . Such a system has an infinite number
of solutions, by adding the constraint that

∑
i q

∗
i = 1, we

obtain a unique solution.

Theorem 2.4. If Q∗ exists then it is solution of{
Q∗ = Q∗P∑

i q
∗
i = 1
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