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In this course, we will focus on a simple model of
queues. These models allow us to estimate information
about the queue, such as its size or waiting time.

Specifically, a queue consists of one or more lists of
people and one or more counters to handle the individ-
uals at the front of the line. When a person is served,
they leave the queue. We assume that people are well-
behaved: those who arrive queue up at the back, and no
one cuts in line.

This type of queue can, of course, model a line at a
ticket counter, but also different events such as packet
processing in a router or the waiting times for patients
waiting for an organ donation, stock levels of fruits and
vegetables in a supermarket, etc.

One initial challenge in a queue is uncertainty. We do
not know exactly when people will arrive in the queue
and when they will leave. However, with the help of
statistical models, we can estimate a distribution associ-
ated with the arrival and departure of individuals. We
will see that we can model these queues with an infinite-
state Markov chain. Another difficulty is the continuous
aspect of the queue, as individuals can arrive and leave
at any moment.

1 The M/M/k model

The M/M/k model is a simplified queuing model that
assumes that people arrive and leave the queue following
a Poisson stochastic process. The mixture of these two
processes defines a queue. We define a random variable
X(t) that corresponds to the number of people in the
queue at time ¢. The first Poisson process, called the
birth process, randomly brings a person to the end of
the queue and increases X. The second Poisson process,
called the death process, randomly removes a person from
the front of the queue and decreases X.

1.1 Model equations

Since time is continuous, we cannot easily define the
probability that X (¢) = n. Instead, we fix a time step dt,
and the following equations indicate the probability of a
person appearing or disappearing between the instances
t and t + dt, so X(t + dt) — X(¢). These probabilities
depend on the number of people in the queue at time

t, allowing the model the flexibility to vary the proba-
bilities based on the size of the queue. This is useful,
for example, if we want to model a behavior of abandon-
ment, when people think they will come back later, or
attraction, when a crowd makes people curious and they
approach the crowd to take a look.

We obtain the following equations that govern X:

Pr(X(t+dt)— X(t) = 1|X(t) =n) = A, - dt + o(dt)
Pr(X(t+dt) — X(t) = —1|X(t) =n > 0) = py, - dt + o(dt)
Pr(X(t+dt) — X(t) = 0[X(t) =n > 0)
—(\n +un) dt + o(dt)
Pr(X(t+dt)— X(t)=0|X(t) = ):1 o - dt + o(dt)
(IPr(X(t+dt) — X ()| > 11X (t) = n) = o(d ))

where (A,)nen and (un)nen+ are strictly positive val-
ues.

The first equation corresponds to the first process,
when a person appears. The second corresponds to the
second process, when a person disappears. The third
and fourth indicate the probability that no one appears
or disappears. It can be seen that there is a special case
when n = 0 because, in this case, people can only appear.
The last is the probability that more than one person ap-
pears or disappears. The o(dt) can be understood as a
very small value that decreases very quickly and tends to
0 as dt decreases and tends to 0. It can be seen that if dt
tends to 0, the probability of appearance or disappear-
ance of people is very low; it is more likely that X does
not change between ¢ and ¢+ dt. It can also be seen that
the probability of having more than one event is very low
with dt. Indeed, the smaller the time step, the less likely
it is that two people arrive or leave the queue between ¢t
and t+dt. Assuming dt is small enough, we thus obtain a
fairly simple model of a queue where sometimes a single
person arrives and sometimes a single person leaves.

In concrete terms, what do A, and pu,, correspond to?
They represent the arrival rates and departure rates.
These rates indicate, on average, the number of people
per second who arrive and leave the queue if there are
n people in the queue. It can be noted that py has no
meaning since no one can leave the queue if n = 0. This
is why there is a special case when n = 0.



Remark 1. These rates can be expressed in another unit;
you just need to ensure that it is the same unit for both.

1.2 Graphical drawing of a queue

One can graphically represent a queue with the following
drawing:
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This representation echoes those of Markov chains.
Each state indicates the number of people in the
queue. It does not involve moments or durations. Each
arc indicates the arrival and departure rate of a single
person (thus the transition from state n to state n+1 or
n—1). There are several differences here compared to the
representations made in the Markov chain model. First,
the chain is infinite, so it cannot be represented in its en-
tirety, and most results about chains vary when moving
from a finite chain to an infinite chain. We will therefore
conduct a specific study in this course on this type of
chain, which is queues. Secondly, probabilities are not
indicated on the arcs. Only the rates are indicated. Fi-
nally, to have a complete chain, there would need to be
arcs indicating that the number of people in the queue
is constant (thus from state n to itself) and those indi-
cating that the number of people varies by more than
1.

Important detail: pay close attention to the place-
ment of the rates as a function of n. Each arrow indi-
cates the transition from state n to state m, which can
be n+1 or n—1. On this arrow, the rate A, is indicated
if m=mn+1and u, if m =n — 1. Thus, the rate arrows
An and p, are not aligned. Also, it is clear from the
drawing that g is not applicable.

Finally, be careful with another detail. One must take
a step back regarding these rates. A\, and pu,, are arrival
rates, in number of people per second. However, just
because it is stated at state n that 30 people are arriving
every second, it does not mean that we will have n +
30 people in the queue at the next second. This rate
indicates an average and not a deterministic departure.
It thus indicates a probability of transitioning from n to
n+ 1 between instances ¢t and t+dt. Without taking this
random aspect into account, one can have a misleading
idea of the queue’s evolution. For example, just because
there are very high rates u,, and low rates \,, it does not
mean that the queue will not grow. It is improbable, but
it is possible that no one leaves the queue for a certain
period of time.

1.3 Particular queues

We can mention two particular queues. The first is the
queue where the rates do not depend on n. Thus, we
have A\, = A and u, = p for all n € N, where A, i > 0.
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A second recognizable case is that of lines with mul-
tiple counters. Each counter means that the number of
people leaving the line per second is multiplied by the
number of counters open. However, a counter can only
process one person in line; a counter only opens if it can
process someone. So initially, when there is no one in
line, no counter is open. Then one person arrives, we
open one counter, then another person arrives, we open
another counter, and so on, until all counters are open.
The rate increases as counters open until the point where
the rate becomes constant. If there are k counters, we
have the following representation:
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1.4 Name of the model

In the model, the name M/M/k refers respectively to:

e the arrival process, M means Poisson and comes
from the fact that we model it as a Markov process.

e the departure process, M also means Poisson
e the number of servers.

Other letters exist such as D for deterministic arrivals
and departures, planned in advance, G for general indi-
cating that the distribution is unknown (more precisely
it is not specified by the model). These notations are
known as Kendall’s notations.

2 Stationnary distribution
We want to obtain information about the queue. At the

end of this course, we will focus on the distribution law
of X as a function of ¢: we denote P, (t) the probability



that there are n people in the queue at time ¢. In other
words, P,(t) = Pr(X(t) =n).
We make two assumptions in this section.

e We assume the queue is empty at time 0.

e We assume that, in all the equations governing X (),
the o(dt) are the same function which we will denote

as g(dt) from now on. We thus check that % -0
as dt — 0.

Theorem 2.1. P, is the solution of the following system
of differential equations:

Pr(t) = A1+ Poo1(t) + fngr - Py (t)

— (pn + M) - Pu(t) sin >0 (
Py(t) = 1 - Pr(t) — Xo - Po(t) (
Po(0) =1 (3
P,(0)=0,n>0 (

Proof. The two initial cases correspond to the assump-
tion that the queue is empty at the beginning of the
process. To demonstrate the first equation, we will use
the definition of the derivative as a rate of change.

Note that the proof here is made for n > 0. It
must be adjusted for the case n = 0.

P, (t+dt) — Pu(t)
dt—0 dt

We need to describe P, (t+dt). The probability of having
n people at the time ¢t + dt depends on the number of
people at the time ¢. By the law of total probability:

ZP?"

o (t + dt) = (t+dt) = n|X(t) =

Using the equations that govern X

P,(t+dt) = (Ap_1-dt + g(dt)) - P,_1(t)
(Nn+1 dt + g(dt)) n+1(t)
+ (L= (Mg — ) - dt + g(dt)) - Py(t)

+ > gldt)Pi(t)

i#En—1

i#n+1
Po(t+dt) = An_y - dt - Po_y(t)
+ finy1 - dt - Ppya(t)

+ (1= (Ao — ptn) - dt) - Py (2)

+oo
+ g(dt) Z Pi(t)
=0

i)Pi(t)

+o00
On rappelle que > P;(t) =

i=0
Fult + dfli — ) _ An—1 Pro1(t) + png1 - Poya(t)
+ (=(An = pn)) - Pu(?)
g(dt)
TTa
PT/L(t) =An—1- Pn—l(t) + M1 Pn-i-l(t)
+ (=(An = pin)) - Pu(t)

We will solve this system in a simple case, called sta-
tionnary distribution. The stationnary distribution is a
condition of the queue where the probabilities P, (t) are
constant. It may or may not exist and can be reached
more or less quickly. Here we ask the question of the
existence of this state.

Definition 1. A stationary distribution exists if and
only if there exists a set of probability functions P, (¢)
that are solutions to equations 1 and 2 of the system
in theorem 2.1 such that P/(t) = 0. We then denote
P,(t) = P,.

Remark 2. Tt is not because P, (t) becomes constant after
a certain rank ¢ that the number of people in the queue
becomes constant. Only the probabilities of having n
people in the queue become constant. Observing the
queue will show that its size varies randomly over time;
however, the distribution managing the number of people
in the queue will not depend on time anymore.
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if and only if the stationary distribution exists. In that
case, we have
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if
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We can then show that (P,)nen is a stationnary dis-
tribution if and only if
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The series Z %

converges if and only if Py #
0. If the senes diverges, then Py = 0. From this, we
deduce that P, = 0 for all n, leading to a contradiction,
and thus there is no stationnary distribution. If the series
converges, Py # 0 and the values are well-defined, and

the stationnary distribution exists. O

Now that we have a characterization of the existence
of the stationnary distribution in the general case, we
can apply it to simpler cases. For example, if the ar-
rival and departure rates are constant and equal to A
and u respectively, then a stationnary distribution exists
if and only if the geometric series with coefficient A/
converges, which is equivalent to A < u. This conclusion
is quite logical since a queue with A\ > p means there is
a higher chance that a person arrives than that a person
leaves. Therefore, for all 4, the probability P;(t) gradu-
ally increases until there are approximately ¢ people in
the queue, then it decreases and converges to 0 as more
people arrive in the queue over time. Thus, in the case
of a stationnary distribution, the only possible solution
would be P; = 0 for all 4, which is excluded. Conversely,
if A < u, then as soon as one person arrives in the queue,
there is a chance that they will leave before another per-
son arrives. The more people enter the queue, the more
likely we are to bring the number of people back to 0.
We eventually reach a sort of equilibrium and the prob-
abilities converge.

3 Expected size of the queue

Definition 2. The expected number of people in the
queue is defined by

L(t) =

+oo
t)) = nPu(t)
n=0

In a queue with k counters, the expected number of
people waiting is defined by

+oo

k) =Y (n—k)Pu(t)

n==k

L'(t) = E(max(0, X (t) —
Below is an example of calculating L and L’ in a par-
ticular case.

Theorem 3.1. In an M/M/1 queue where the arrival
and departure rates are constant and equal to A and p
respectively, with A < p, then in stationnary distribution,
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We perform a change of variable, and then we recognize
a standard series.
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For L', the idea is similar.

L =

+oo +oo

L'=) (n—1)P,=)» (n—1)P,
+o0 n

L'=Y (n-1) (12)

n=0 K
L' = éL
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p(p = A)
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