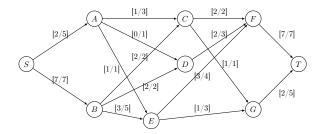
# Tutorial 4: The maximum flow and the minimum cut problems

Operations research, 3rd semester.

2024

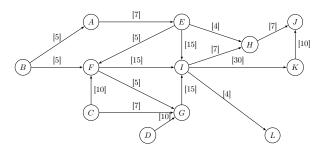
## Exercice 1 — The Ford-Fulkerson algorithm

- 1. Compute the maximum flow problem in the following graph with the Ford-Fulkerson algorithm. An initial flow is given. Use the marking algorithm. Do one of the iterations again with the residual network method.
- 2. Give a minimum cut of this graph.
- 3. Which capacity should we change in this graph in order to increase the maximum flow by 1? Give a counterexample in which it is not sufficient. Describe an algorithm that change the capacity of one or more arcs and increase the maximum flow by exactly 1.



# Exercice 2 — Pipes of water

Water is supplied to three cities J, K and L from four stocks A, B, C, D (water towers, groundwater table, ...). Each day, those stocks produce respectively 15, 10, 15 and 15 thousands of  $m^3$  of water. The pipes of the city are represented on the following graph where the maximum flow rate in thousands of  $m^3$  per day of each pipe is written next to the arc.

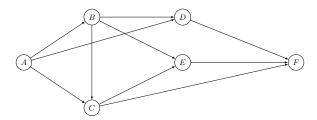


- 1. Compute how many  $m^3$  of water can be piped to the cities. To do so, transform this problem into a maximum flow problem and compute a minimum cut. Use the Ford-Fulkerson algorithm with the marking algorithm. Do one of the iterations again with the residual network method.
- 2. This value does not seem sufficient. Those three cities want to improve the network so that it can meet more needs of the population. They made a study to determine how much water they need each day:  $15000 \ m^3$  for J, 20000 for K and 15000 for L. The town council decided to rebuild the pipes (A,E) and (I,L).

What capacity should we associate to those two arcs in order to fulfil the needs of the cities.

#### Exercice 3 — Disjoint paths in a graph

Let G be the following graph.



What is the maximum number of node disjoint paths from A to F in this graph? (Three paths are node disjoint if and only if its do not have any common node.) In order to answer this question, transform this problem into a maximum flow problem.

# Exercice 4 — Maximum matching

We recall that a bipartite graph is a graph where the nodes are parted into two independent sets (nodes without edges). A matching is a set of edges not incident to each other. Show that the maximum matching problem in a bipartite graph can be seen as a maximum flow problem. To do so, give the input and the output of this flow problem and explain how to retrieve the matching from the flow.

## Exercice 5 — Wedding dinner

A couple wants to organize its wedding dinner. In order to increase social interactions, the married ones do not want to place two friends or members of a same family at the same table. How this problem could be modelized by a maximum flow problem? We consider there are p groups of friends/families, the i-th group contains a(i) members. There are q tables and b(j) seats at the j-th table.

## Exercice 6 — Experiment choice

We want to choose scientific experiments among n experiments  $E_1, \ldots, E_n$  that must be done in outer space. Each experiment needs tools that should be chosen among p tools  $I_1, \ldots, I_p$ . Each tool may be used by multiple experiments. By conducting the experiment  $E_i$ , we earn  $p_i$  euros, but carrying the tool  $I_j$  into outer space costs  $c_j$  euros. The objective is to maximize the benefits.

We are going to modelize this problem with the minimum cut problem in the following transportation network :

For each experiment  $E_i$ , we add a node  $E_i$ . For each tool  $I_j$ , we add a node  $I_j$ . There is also a source s and a sink t. An arc of capacity  $p_i$  goes from s to  $E_i$  and an arc of capacity  $c_j$  goes from  $I_j$  to t. Finally, if the experiment  $E_i$  uses the tool  $I_j$ , then there is an arc of infinite capacity from  $E_i$  to  $I_j$ .

1. What is the network associated to the following experiments? Find a minimum cut in that network.

|       | $p_i$ | $I_1$ | $I_2$ | $I_3$ | $I_4$ | $I_5$ | $I_6$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $c_j$ |       | 2     | 1     | 5     | 3     | 1     | 7     |
| $E_1$ | 3     | X     | x     | X     |       |       |       |
| $E_2$ | 7     | x     |       |       | x     | x     |       |
| $E_3$ | 7     |       |       | x     |       |       | x     |
| $E_4$ | 2     |       | x     |       | x     | x     | x     |

- 2. Show that any feasible solution may be associated with a cut separating s from t with finite capacity. What is the link between the capacity of that cut and the benefits of the solution?
- 3. Deduce how to solve the example of question 1.