Tutorial 8: Penalties and Barrier methods

Operations research, 3rd semester.

2024

Exercice 1 — Beltrami penalties

We want to minimize $f(x) = x_1 + x_2$ such that $x_1^2 - x_2 \le 2$.

- 1. Solve the problem using the penalties method, with the penalty of Courant-Beltrami.
- 2. Same question with the equivalent following problem : minimize $f(x) = x_1 + x_2$ such that $x_1^2 x_2 + x_3^2 = 2$.

Exercice 2 — Barrier method

Solve the following problem with the barrier method : minimize $f(x) = x_1 + x_2$ such that $x_1^2 - x_2 \le 2$.

Exercice 3 — Penalties and Lagrange multipliers

We consider a generic problem in which we want to minimize f(x) on \mathbb{R}^n such that $g_i(x) \leq 0$ for every $i \in [1; m]$ and such that $h_j(x) = 0$ for every $j \in [1; p]$. We apply the penalties method with the Penalty of Beltrami P. We write $q(x, \mu) = f(x) + \mu P(x)$ and $x_k = \arg \min q(x, k)$.

We assume that f, g_i and h_j are C^1 . Let x^* be an optimal solution of f, we assume x^* satisfy the linear independant constraint of qualification. Finally, we assume that the sequence x_k converges toward x^* .

- 1. Recall the Kuhn-Tucker conditions for that problem at x^* , we write λ_i and μ_j the Langrange multipliers respectively associated with the functions g_i and h_j .
- 2. May there exist multiple values for λ_i , μ_j satisfying the conditions?
- 3. Write the gradient of q(x,k) at x_k , what is the numerical value of that gradient?
- 4. Deduce that $\lim_{k \to +\infty} 2kg_i^+(x_k) = \lambda_i$ and $\lim_{k \to +\infty} 2kh_j(x_k) = \mu_j$ if those limits exist.

Exercice 4 — Internal barrier

We consider the following problem

$$\min_{x \in \mathbb{R}} f(x) = x^2 \text{ s.c. } \begin{cases} x - 1 \le 0 & (1) \\ -x - 1 \le 0 & (2) \\ -x^2 \le 0 & (3) \end{cases}$$

- 1. Draw the graphical representation of the problem and an associated logarithmical barrier. Does the problem satisfy the hypothesis that are needed to use the logarithmical and inverse barriers?
- 2. Whatever the answer to the previous quesiton is, try to solve the problem using a barrier method, using a logarithmical barrier.
- 3. We replace the constraint $-x^2 \le 0$ by $g_3(x) \le 0$ with

$$g_3(x) = \text{ s.c. } \begin{cases} -(x+\frac{1}{2})^2 \text{ if } x \leq \frac{-1}{2} \\ -(x-\frac{1}{2})^2 \text{ if } x \geq \frac{1}{2} \\ 0 \text{ otherwise} \end{cases}$$

Draw the graphical representation of the problem and an associated barrier.

4. Can we solve the problem with the barrier method? How could we get around that problem?