
Tutorial 6 : Projected Gradient algorithm

Operations research, 3rd semester.

2024

Exercice 1 — A simple example.

Let (P ) be the following problem :

min
x∈R2

f(x) = x2
1 + 4x2

2 s.c.


x1 + 2x2 ≥ 1

−x1 + x2 ≤ 0

x1 ≥ 0

x2 ≥ 0

1. Draw the graphical representation of the problem.
2. Check that every feasible solution x of (P ) (i.e. satisfying the constraints) satisfies the linear

independance qualification. Deduce that only the optimale solutions satisfies the Karush
Kuhn Tucker conditions.

3. Apply the algorithm from P0 =

(
1
1

)
(3 iterations).

4. Check that the point satisfies the Karush Khun-Tucker conditions.

▶ Correction
We rewrite the problem in the correct form :

min
x∈R2

f(x) = x2
1 + 4x2

2 s.c.


−x1 − 2x2 ≤ −1 (1)

−x1 + x2 ≤ 0 (2)

−x1 ≤ 0 (3)

−x2 ≤ 0 (4)

1. The equation of an ellipse with semi-major axes a and b centered at the origin is x2/a2 +
y2/b2 = 1.
Thus, x2

1 + 4x2
2 = R is the equation of an ellipse such that :{√

R
a2 = 1
√
R

b2 = 4

Therefore, a = 2b =
√
R.

We then plot ellipses around the origin that get progressively smaller with a = 2b until we
exit the set of feasible solutions ; the point at which we exit indicates the optimal solution.
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x1

x2 (2)

0.5

1

(1)

(3)

(4)

•
Opt = (0.5, 0.25)

2. The coefficients matrix is As =


−1 −2
−1 1
−1 0
0 −1

.

We can see in the drawing that, among all the feasible solutions, only the following cases are
possible for I(x), the set of inequalities saturated by a point x :

— I(x) = ∅
— I(x) = {1}
— I(x) = {2}
— I(x) = {4}
— I(x) = {1, 2}
— I(x) = {1, 4}

In the first 4 cases, (∇gi(x)|i ∈ I(x)) contains 0 or 1 vector, so it is a linearly independent
family.
The other two cases are

— (∇gi(x)|i ∈ I(x)) = (

(
−1
−2

)
,

(
−1
1

)
) which is linearly independent (the matrix is squa-

red and has determinant -3, so is invertible).

— (∇gi(x)|i ∈ I(x)) = (

(
−1
−2

)
,

(
0
−1

)
) which is linearly independent (the matrix is squa-

red and has determinant 1, so is invertible)..
We can deduce that any local (or global) minimum satisfies (KKT). However, f is convex
and the gi are convex (since they are linear), so any point that satisfies (KKT) is a global
minimum. Therefore, there is equivalence.

3. We start at P0 =

(
1
1

)
. We have I(x) = {2} et ∇f(x) =

(
2
8

)
.

We compute the projection L = {y| − y1 + y2 = 0} :

— via d = (I − tAs · (As · tAs)
−1 ·As) · (−∇f(x)) =

(
0.5 0.5
0.5 0.5

)
·
(
−2
−8

)
=

(
−5
−5

)
— ou via y ∈ L ⇔ y1 = y2 ; donc d = β

(
1
1

)
et

(−∇f(x)) · d = d2 ⇒ −2β − 8β = β2 · 2 ⇒ β = −5

.
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We can check that d ∈ L and that (−∇f(x))− d =

(
3
−3

)
⊥ d,

d ̸= 0⃗, Thus, we move as far as possible in the indicated direction. We denote S as the feasible
set.

α1 = max
0≤α

{α|P0 + α · d ∈ S}

= max
0≤α

{
α|

(
1− 5α
1− 5α

)
∈ S

}

= max
0≤α

α|

−3 + 15α ≤ −1
0 ≤ 0

−1 + 5α ≤ 0
−1 + 5α ≤ 0


=

2

15

α2 = arg min
0≤α≤α1

{g(α) = f(P0 + α · d)}

= arg min
0≤α≤α1

{(1− 5α)2 + 4(1− 5α)2}

= arg min
0≤α≤α1

{5(1− 5α)2}

g′(α) = 5 · (−5) · 2(1− 5α) ≤ 0

⇔ α ≤ 1

5

Thus g′(α) is negative on [0, α1], so

α2 = α1 =
2

15

We move to x = P0 +
2
15d =

(
1/3
1/3

)
.

We have I(x) = {1, 2} et ∇f(x) =

(
2/3
8/3

)
.

We project on L = {y| − y1 + y2 = 0;−y1 − 2y2 = 0} = {0}, donc d = 0⃗. (We can also
recalculate the projection operator, which is the zero matrix).

We can then write −∇f(x) as λ1∇g1(x) + λ2∇g2(x) = λ1

(
−1
−2

)
+ λ2

(
−1
1

)
.

— either by solving the system
— or with (As · tAs)

−1 ·As · (−∇f(x)) that gives λ.

(As · tAs)
−1 ·As =

(
−1/3 −1/3
−2/3 1/3

)
then λ =

(
10/9
−4/9

)
We remove the constraint (2) from I(x). We compute the projection on L = {y|− y1− 2y2 =
0}.

d = (I − tAs · (As · tAs)
−1 ·As) · (−∇f(x)) =

(
0.8 −0.4
−0.4 0.2

)
·
(
−2/3
−8/3

)
=

(
8/15
−4/15

)
We can check that d ∈ L and that (−∇f(x))− d =

(
−6/5
−12/5

)
⊥ d
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d ̸= 0⃗, thus, we move as far as possible in the indicated direction.

α1 = max
0≤α

{α|P1 + α · d ∈ S}

= max
0≤α

{
α|

(
1/3 + 8/15α
1/3− 4/15α

)
∈ S

}

= max
0≤α

α|

−1 ≤ −1
−12/15α ≤ 0

−1/3− 8/15α ≤ 0
−1/3 + 4/15α ≤ 0


=

5

4

α2 = arg min
0≤α≤α1

{g(α) = f(P1 + α · d)}

= arg min
0≤α≤α1

{(1/3 + 8/15α)2 + 4(1/3− 4/15α)2}

=
5

16

We move to x = P1 +
5
16d =

(
1/2
1/4

)
We still have I(x) = {1}.
We compute the projection on L = {y| − y1 − 2y2 = 0}.

d = (I − tAs · (As · tAs)
−1 ·As) · (−∇f(x)) =

(
0.8 −0.4
−0.4 0.2

)
·
(
−1
−2

)
=

(
0
0

)
d = 0⃗ (since we are in 2D and the projection operator is non-zero, this simply means that the
gradient is orthogonal to the boundary we are on ; therefore, its projection on the boundary
is zero).

We then write −∇f(x) =

(
−1
−2

)
as λ1∇g1(x) = λ1

(
−1
−2

)
.

We have λ1 = 1.

All the λi are positive, so we stop and return the solution.
(
1/2
1/4

)
4. We have ∇f

(
1/2
1/4

)
+∇g1

(
1/2
1/4

)
= 0 et g1

(
1/2
1/4

)
= 0

we set λ1 = 1 et λ2, λ3, λ4 = 0



∇f(x) +
4∑

i=1

λi∇gi(x) = 0

λ1 · g1(x) = 0

λ2 · g2(x) = 0

λ3 · g3(x) = 0

λ4 · g4(x) = 0

(KKT) conditions are satisfied.

Exercice 2 — With equalities

Let (P ) be the following problem :

max
x∈R2

f(x) = x1 · x2 s.c.


x1 + x2 + x3 = 4 (1)

x1 − x2 + x4 = 1 (2)

x1, x2, x3, x4 ≥ 0

Same questions as exercice 1 except that the algorithm should be started from the point


1.5
0.5
2
0

).
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▶ Correction

1.
0

x1

x2(1)

1

(2)

•

We plotted the gradient on the drawing. The optimum is at (2, 2). The function is not convex,
but there is only one point satisfying the (KKT) conditions.

2. We can rewrite the problem as follows :

min
x∈R2

f(x) = −x1 · x2 s.c.


x1 + x2 + x3 = 4 (1)

x1 − x2 + x4 = 1 (2)

−x1,−x2,−x3,−x4 ≤ 0 (3)...(6)

The matrix is A =


1 1 1 0
1 −1 0 1
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


We can be in one of the following cases :

— I(x) = ∅
— I(x) = {3}
— I(x) = {4}
— I(x) = {5}
— I(x) = {6}
— I(x) = {3, 4}
— I(x) = {3, 5}
— I(x) = {4, 6}
— I(x) = {5, 6}

For example, we can check the linear independence in the last case directly. We then have

the family of vectors



1
1
1
0

 ,


1
−1
0
1

 ,


0
0
−1
0

 ,


0
0
0
−1




The associated square matrix has a determinant of -2, therefore it is invertible, hence the
family is linearly independent. Thus, the subfamilies are also linearly independent. The qua-
lification under linear independence is verified if I(x) ⊂ {5, 6}.

3. Here are the main outlines of the algorithm, the method being the same as in the previous
exercise :
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We start at


1.5
0.5
2
0



We have ∇f(x) =


−0.5
−1.5
0
0


We have I(x) = {6}. We project on L = {y|y4 = 0; y1 + y2 + y3 = 0; y1 − y2 + y4 = 0} =
{y|y4 = 0; y3 = −2y1; y1 = y2}.

We find d =


1/3
1/3
−2/3
0

.

d ̸= 0⃗. We move following the direction x+ αd. We find α1 = α2 = 3

We move to x =


2.5
1.5
0
0

.

We have ∇f(x) =


−1.5
−2.5
0
0


We have I(x) = {5, 6}. There are 2 saturated inequalities and 2 equalities, so the space onto
which we project is necessarily {0} (because 1. we are projecting onto a space orthogonal to
a 4-dimensional space. Since we are in R4, this space has dimension 0, so it is {0}. 2. We
have AS which is a square and invertible matrix. If we calculate the projection operator, we
will get the zero matrix.)
Thus we write −∇f(x) as λ5∇g5(x) + λ6∇g6(x) + µ1∇h1(x) + µ2∇h2(x). We find λ5 = 2,
λ6 = −0.5, µ1 = 2, µ2 = −0.5. We remove 6 from I(x).
We have I(x) = {5}. We project on L = {y|y3 = 0; y1 + y2 + y3 = 0; y1 − y2 + y4 = 0} =

{y|y3 = 0; y2 = −y3; y4 = y2/2}. We find d =


−1/6
1/6
0
1/3

.

d ̸= 0⃗. We move with the direction d and we find α1 = 15, α2 = 3

We move to x =


2
2
0
1

.

We have ∇f(x) =


−2
−2
0
0


We project onto the same space as before, I(x) has not changed and still equals {5}. We find
d = 0⃗.
Thus, we express −∇f(x) in the form λ5∇g5(x) + µ1∇h1(x) + µ2∇h2(x). We find λ5 = 2,
µ1 = 2, µ2 = 0.
All the λi (here only λ5) are positive. We stop here.

4. The point satisfies (KKT) with λ1 = λ2 = λ6 = 0 and λ5 = 2, µ1 = 2, µ2 = 0. We cannot
deduce global optimality because the function is not convex. However, it can be noted that
this is the only feasible point that meets these conditions. Therefore, there is no other local
maximum in the feasible space. It is thus optimal.
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Exercice 3 — Projection operator.

Given a vector g ∈ Rn, we want to minimize the 1
2∥g−p∥2 where such that p ∈ Rn and Ap = 0.

The size of the matrix A is m× n with rank m < n.
In other words, we search for the projection of g over the space {p\Ap = 0}.

1. Write and solve the (KKT) conditions for this problem.
2. This way, find the formula of the projection operator on the space L = {p\Ap = 0}.

▶ Correction
All the points satisfy the qualification of linear independence since the rank of the matrix is

m ; the local minima thus all satisfy KKT, and A tA is invertible.

1.

(KKT ) :

{
−(g − p) + tAµ = 0 (1)

Ap = 0 (2)

A · (−(g − p) + tAµ) = 0

−Ag +Ap+A tAµ = 0

A tAµ = Ag

µ = (A tA)−1Ag

2. We rewrite (1)

−(g − p) + tA(A tA)−1Ag = 0

p = (I − tA(A tA)−1A) · g

The function is convex, the equalities are linear, so (KKT) is sufficient to prove global optima-
lity ; p is indeed the projection of g onto L.
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Exercice 4 — Non convex problem

We consider the following problem :
Given a rectangle of size 10 × 12, we want to place 4 disks, centered in each of the 4 vertices

of the rectangle such that the area is maximum and such that the interiors of the disks do not
intersect ; in other words, the disks may only touch the boundaries of the others.

For example, the following drawing contains a maximal feasible solution :

1. Modelize the problem as a mathematical program. We set γ =
√
244 ≃ 15.62.

2. Show that, if we apply the projected gradient algorithm from the point where every radius
is nul, the algorithm stops at the first iteration.

3. Show that, if we apply the projected gradient algorithm from the point given on the drawing
(we may assume that the radius of the two lower disks are equals), the algorithm stops at
the first iteration.

4. Show that those solutions are not optimal.

▶ Correction

1. We can write the problem in the following form, with x1, x2, x3, x4 as the radii of the discs
with center 1 at the bottom left, 2 at the bottom right, 3 at the top right, and 4 at the top
left.

max
x∈R2

f(x) = x2
1 + x2

2 + x2
3 + x2

4 s.c.



x1 + x2 ≤ 12

x1 + x3 ≤ γ

x1 + x4 ≤ 10

x2 + x3 ≤ 10

x2 + x4 ≤ γ

x3 + x4 ≤ 12

x1, x2, x3, x4 ≥ 0

We can rewrite it that way :

min
x∈R2

f(x) = −x2
1 − x2

2 − x2
3 − x2

4 s.c.



x1 + x2 ≤ 12 (1)

x1 + x3 ≤ γ (2)

x1 + x4 ≤ 10 (3)

x2 + x3 ≤ 10 (4)

x2 + x4 ≤ γ (5)

x3 + x4 ≤ 12 (6)

−x1,−x2,−x3,−x4 ≤ 0 (7), (8), (9), (10)

2. Note : This point is a local maximum, so the gradient is zero, and the algorithm will neces-
sarily stop.
If x = 0, then we have I(x) = {7, 8, 9, 10}. We calculate the projection onto L = {y| − y1 =
−y2 = −y3 = −y4 = 0} = 0⃗.
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Alternatively, the matrix As is −I, so tAs · (As · tAs)
−1 ·As = I, thus the projection operator

is the zero matrix.
Another method, the gradient is zero, so its projection is also zero.

Thus, we express −∇f(x) =


0
0
0
0

 in the form
10∑
i=7

λi∇gi(x). We have trivially λi = 0 for all

i, so we stop.
3. On the figure, we deduce the radiuses as follows

x1 + x2 = 12 (1)

x1 + x4 = 10 (3)

x2 + x3 = 10 (4)

with x1 = x2 and x3 = x4.

Then


x1 = 6

x2 = 6

x3 = 4

x4 = 4

Then ∇f(x) =


−12
−12
−8
−8


We have I(x) = {1, 3, 4} et As =

1 1 0 0
1 0 0 1
0 1 1 0

.

I − tAs · (As · tAs)
−1 ·As =


0.25 −0.25 0.25 −0.25
−0.25 0.25 −0.25 0.25
0.25 −0.25 −0.25 0.25
−0.25 0.25 0.25 −0.25


Then d = (I − tAs · (As · tAs)

−1 ·As) · (−∇f(x)) = 0⃗.

So we write −∇f(x) as
∑

i=1,3,4

λi∇gi(x) = λ1


1
1
0
0

+ λ3


1
0
0
1

+ λ4


0
1
1
0

.

Then


λ1 + λ3 = 12

λ1 + λ4 = 12

λ4 = 4

λ3 = 4

So λ1 = 8

All the λi are positive, so we stop and return the solution.
4. These two solutions are not optimal.

The first has a value of 0 and the second -104.

For example, the solution x =


10
2

γ − 10
0

 has a value of -135.59.

Exercice 5 — Projection and standard form

We consider the following programs :

min
x∈R2

f(x) = x2
1 + x2

2 s.c.


x1 + x2 ≥ 2

x1 ≥ 0

x2 ≥ 0
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min
x∈R2

f(x) = x2
1 + x2

2 s.c.


x1 + x2 − x3 = 2

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

1. Show that the two programs are equivalent. (They have the same optimal value and every
optimal solution of hte first program can be deduced from an optimal solution of the other.)

2. Draw the graphical representation of the two programs on the same drawing.
3. Show that if we apply an iteration of the projected gradient algorithm on the first program

from the point x = (3, 2), the direction we follow is (−6,−4).
4. Show that if we apply an iteration of the projected gradient algorithm on the second program

from the point x = (3, 2, 3), the direction we follow is (−8/3,−2/3,−10/3).
5. How can we explain that two equivalent programs do not follow the same direction on the

drawing ?

▶ Correction

1. They are equivalent since, if there exists (x1, x2) a feasible solution to the first problem, then
(x1, x2, x1 + x2 − 2) is a solution to the second one with the same objective value. Similarly,
if (x1, x2, x3) is a solution to the first problem, then x1 + x2 = 2 + x3 ≥ 2, so (x1, x2) is a
solution to the first program with the same objective value.

2. 0
x1

x2

•
2

•2

x
1 +

x
2 =

2

x1 + x2 ≥ 2
x1 + x2 + x3 = 2

•x

≃
x 3

3. In the first program, at the point (3, 2), I(x) = ∅, we project onto R2, thus d = −∇f(x) =(
−2x1

−2x2

)
=

(
−6
−4

)
4. In the second program, at the point (3, 2,−3) we have I(x) = ∅ but we have an equality.

Therefore, we project onto the space L = {y|y1 + y2 − y3 = 0}.
Using the projection operator, we have AS =

(
1 1 −1

)
; so PL = I − tAS · (AS · tAS)

−1 ·

AS =

 2/3 −1/3 1/3
−1/3 2/3 1/3
1/3 1/3 2/3

 donc d = PL ·

−6
−4
0

 =

 −8/3
−2/3
−10/3


5. This can be explained by the fact that the projection operator is not equivalent in the two

programs. In the second program, we project onto a slightly different space than in the first.

Indeed, in the first program, we project onto L1 = {y ∈ R2} = {
(
y1
y2

)
} and in the second

one, onto L2 = {y|y1 + y2 − y3 = 0} =


 y1

y2
y1 + y2 − 2


One can see that the first is, in a way, included in the second ; since one is free to choose any
coordinates y1 and y2 in L2. However, the non-free existence of this third coordinate means
that the point closest to the gradient of f in L2 does not have exactly the same first two
coordinates, it is slightly deviated.
There are, however, points where the projection does indeed contain −∇f(x).
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These are the points where x1 = x2. The gradient then has the form

α
α
0

 et PL ·

−α
−α
0

 = −α
−α
−2α


This difference can be explained differently. Instead of making the drawing in 2D, it should
be done in 3D. We are in the plane P = {x3 = x1 + x2 − 2}. This plane is tilted. If the
gradient has the first two coordinates equal, then, as explained earlier, the projection also
has its first two coordinates equal, so we are indeed following the same direction in both
programs.
Conversely, if these coordinates are different, then the gradient is not in the direction of
descent, and when projected onto the plane, the projection deviates a bit. The farther we
move away from the line x1 = x2, the more the projection deviates.

0
1

2
3

4 0

2

4
0

5

0 2 4 0 2 4
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