Tutorial 7: Reduced Gradient algorithm

Operations research, 3rd semester.

2024

Exercice 1 — Simple example.

Soit (P) le problème suivant :

$$\min_{x \in \mathbb{R}^2} f(x) = x_1^2 + 4x_2^2 \text{ s.c.} \begin{cases}
x_1 + 2x_2 \ge 1 \\
-x_1 + x_2 \le 0 \\
x_1 \ge 0 \\
x_2 \ge 0
\end{cases}$$

- 1. Write the augmented form of (P) using two new variables x_3 and x_4 .
- 2. Draw the graphical representation of the problem, include x_3 and x_4 on the drawing.
- 3. Apply the algorithm from $P_0 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}$ and the basis $\mathcal{B} = \{1, 3\}$ (3 iterations).
- 4. Check that the point satisfies the Karush-Khun-Tucker conditions.

▶ Correction

1.
$$\min_{x \in \mathbb{R}^2} f(x) = x_1^2 + 4x_2^2$$
 s.c.
$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ -x_1 + x_2 + x_4 = 0 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

2. The equation of an ellipse with semi-major axis a and semi-minor axis b centered at the origin is $x^2/a^2+y^2/b^2=1$.

So $x_1^2 + 4x_2^2 = R$ is the equation of an ellipse such that :

$$\begin{cases} \frac{\sqrt{R}}{a^2} &= 1\\ \frac{\sqrt{R}}{12} &= 4 \end{cases}$$

So
$$a = 2b = \sqrt{R}$$
.

We therefore draw ellipses around the origin that get increasingly smaller with a=2b until we exit the set of feasible solutions; the point where we exit indicates the optimal solution.

3. We start from $P_0 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}$ with the base $B = \{1, 3\}$, so $N = \{2, 4\}$.

The matrix A is $\begin{pmatrix} 1 & 2 & -1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$; the rank is 2.

The gradient is
$$\nabla f(P_0) = \begin{pmatrix} 2 \\ 8 \\ 0 \\ 0 \end{pmatrix}$$

We compute
$$A_B$$
, A_N , x_B , x_N , ∇f_B and ∇f_N :
$$A_B = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}, \quad A_N = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad x_N = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\nabla f_B = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad \nabla f_N = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

The matrix A_B is invertible and $A_B^{-1} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix}$.

We can compute the reduced gradient :

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-} \mathbf{1} \cdot A_{N} + {}^{t}\nabla f_{N}$$
$$= \begin{pmatrix} 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} + \begin{pmatrix} 8 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 10 & 2 \end{pmatrix}$$

Second method : explicitly compute $\bar{f}(x_N)$.

$$f(x) = x_1^2 + 4x_2^2$$
$$\bar{f}(x_N) = (x_2 + x_4)^2 + 4x_2^2$$
$$= 5x_2^2 + x_4^2 + 2x_2x_4$$

So
$$\nabla \bar{f}(x_N) = \begin{pmatrix} 10x_2 + 2x_4 \\ 2x_4 + 2x_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$$

We compute now the direction
$$d_N = \begin{pmatrix} -10 \\ 0 \end{pmatrix} \leftarrow \nabla \bar{f}(x_N)_{x_2} > 0$$
 et $x_2 \neq 0$ $\leftarrow \nabla \bar{f}(x_N)_{x_4} > 0$ et $x_4 = 0$ We deduce $d_B = -A_B^{-1}A_Nd_N = \begin{pmatrix} -10 \\ -30 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}$

We deduce
$$d_B = -A_B^{-1} A_N d_N = \begin{pmatrix} -10 \\ -30 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}$$

The direction is not null, we search then α_1 = the maximum $\alpha \ge 0$ such that $P_0 + \alpha \cdot d \ge 0$.

We have then
$$\begin{cases} 1 - 10\alpha & \geq 0 \\ 1 - 10\alpha & \geq 0 \\ 2 - 30\alpha & \geq 0 \\ 0 - 0\alpha & > 0 \end{cases}$$

We are now looking for the α between 0 and α_1 that minimizes $f(P_0 + \alpha d)$.

$$g(\alpha) = f(P_0 + \alpha d) = (1 - 10\alpha)^2 + 4(1 - 10\alpha)^2$$
$$= 5(1 - 10\alpha)^2$$
$$g'(\alpha) = -100(1 - 10\alpha)$$
$$g'(\alpha) \le 0$$
$$\Leftrightarrow \alpha \le \frac{1}{10}$$

The function g is therefore decreasing between 0 and $\alpha_1 \leq \frac{1}{10}$, we set $\alpha_2 = \alpha_1 = \frac{1}{15}$.

We move to
$$P_1 = P_0 + \frac{1}{15}d = \begin{pmatrix} 1/3\\1/3\\0\\0 \end{pmatrix}$$

We have x_3 that is zero. Therefore, we need to change the basis. We try to replace x_3 with x_2 in the basis (since $x_2 \ge x_4$).

Let $B' = \{1, 2\}$, We have $A_{B'} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$ of determinant 3, hence invertible. We can therefore perform this change of basis.

We now have $B = \{1, 2\}$ and N = 3, 4.

The gradient is
$$\nabla f(P_0) = \begin{pmatrix} 2/3 \\ 8/3 \\ 0 \\ 0 \end{pmatrix}$$

We compute A_B , A_N , x_B , x_N , ∇f_B and ∇f_N :

$$A_B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \quad A_N = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$x_B = \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}, \quad x_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\nabla f_B = \begin{pmatrix} 2/3 \\ 8/3 \end{pmatrix}, \quad \nabla f_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 A_B is invertible and $A_B^{-1} = \begin{pmatrix} 1/3 & -2/3 \\ 1/3 & 1/3 \end{pmatrix}$.

One can thus calculate the reduced gradient:

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-}1 \cdot A_{N} + {}^{t}\nabla f_{N}$$

$$= (2/3 \quad 8/3) \cdot \begin{pmatrix} -1/3 & -1/3 \\ -2/3 & 1/3 \end{pmatrix} + \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 10/9 & -4/9 \end{pmatrix}$$

We compute the direction
$$d_N = \begin{pmatrix} 0 \\ 4/9 \end{pmatrix} \leftarrow \nabla \bar{f}(x_N)_{x_3} > 0$$
 et $x_3 = 0$ $\leftarrow \nabla \bar{f}(x_N)_{x_4} < 0$ et $x_4 \neq 0$

We deduce
$$d_B = -A_B^{-1} A_N d_N = \begin{pmatrix} 8/27 \\ -4/27 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

The direction is non-zero, so we are looking for α_1 = the maximum $\alpha \ge 0$ such that $P_1 + \alpha \cdot d \ge 0$.

We then have
$$\begin{cases} 1/3 + 8/27\alpha & \geq 0 \\ 1/3 - 4/27\alpha & \geq 0 \\ 0 + 0\alpha & \geq 0 \\ 0 + 4/9\alpha & \geq 0 \end{cases}$$

So $\alpha_1 = \frac{9}{4}$.

We are now looking for the α between 0 and α_1 that minimizes $f(P_0 + \alpha d)$.

$$g(\alpha) = f(P_0 + \alpha d) = (1/3 + 8/27\alpha)^2 + 4(1/3 - 4/27\alpha)^2$$

$$g'(\alpha) = 2 * 8/27 * (1/3 + 8/27\alpha) - 8 * 4/27 * (1/3 - 4/27\alpha)$$

$$g'(\alpha) = -1/3 + 16/27 \cdot \alpha$$

$$g'(\alpha) \le 0$$

$$\Leftrightarrow \alpha \le \frac{9}{16}$$

The function g is therefore decreasing between 0 and $\frac{9}{16} \le \alpha_1$, we set $\alpha_2 = \frac{9}{16}$.

We move to
$$P_2 = P_1 + \frac{9}{16}d = \begin{pmatrix} 1/2\\1/4\\0\\1/4 \end{pmatrix}$$

We do not have $x_1 = 0$ or $x_2 = 0$, we keep the same basis.

We compute $x_B, x_N, \nabla f_B$ and ∇f_N :

$$x_B = \begin{pmatrix} 1/2 \\ 1/4 \end{pmatrix}, \quad x_N = \begin{pmatrix} 0 \\ 1/4 \end{pmatrix}$$
$$\nabla f_B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \nabla f_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

We compute the reduced gradient :

$${}^{t}\nabla \bar{f}(x_{N}) = -{}^{t}\nabla f_{B} \cdot A_{B}^{-}1 \cdot A_{N} + {}^{t}\nabla f_{N}$$

$$= (1 \quad 2) \cdot \begin{pmatrix} -1/3 & -1/3 \\ -2/3 & 1/3 \end{pmatrix} + (0 \quad 0)$$

$$= (1 \quad 0)$$

We compute the direction
$$d_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \leftarrow \nabla \bar{f}(x_N)_{x_3} > 0$$
 et $x_3 = 0$ $\leftarrow \nabla \bar{f}(x_N)_{x_4} = 0$ et $x_4 \neq 0$

The direction d_N is zero, so we stop and the (KKT) conditions are satisfied.

4. We look for $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0, \mu_1, \mu_2 \in \mathbb{R}$ such that

$$\begin{cases} \nabla f(P_2) + \sum_{i=1}^4 \lambda_i \nabla g_i(P_2) + \sum_{i=1}^2 \mu_j \nabla h_j(P_2) &= 0 \\ \lambda_i g_i(P_2) &= 0 \ \forall i \leq 4 \end{cases}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \lambda_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} + \mu_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + \mu_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} &= 0 \\ \lambda_1 1/2 &= 0 \\ \lambda_2 1/4 &= 0 \\ 0 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \mu_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + \mu_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} &= 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= 0$$

$$= 0$$

$$\lambda_1 1 - \lambda_2 - \lambda_3 1 + \lambda_3 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \mu_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + \mu_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} &= 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

We set $\mu_2 = 0$, $\mu_1 = -1$ and $\lambda_3 = 1$ and the system is then satisfied.

Exercice 2 — Reduced gradient and standard form

Let (P) be the following program.

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.c. } \begin{cases} \sum_{j=1}^n a_{ij} x_j \le b_i \ \forall i \in [1; m] \\ x \ge 0 \end{cases}$$

We assume that the functions g_i are linear and that there exists a feasible solution z > 0.

- 1. Write the augmented form of (P) by adding m variables. Let $y_1, y_2, \ldots, y_{n+m}$ be the variables of that new program and f' be the new objective function.
- 2. Show that if we set $\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$ to z then, for every $i \in [1; m]$, $y_{n+i} \ge 0$. Let y_0 be that solution.
- 3. Show that it is possible to start the reduced gradient algorithm from y_0 with the basis $B = \{n + i, i \in [1; m]\}.$
- 4. Compute the direction d obtained at the first iteration and show that $i \leq n, d_i = -(\nabla f(z))_i$.

► Correction

1. The augmented form

$$\min_{y \in \mathbb{R}^{n+m}} f'(y) \text{ s.c. } \begin{cases} \sum_{j=1}^{n} a_{ij} y_j + y_{n+i} = b_i \ \forall i \in [1; m] \\ y \ge 0 \end{cases}$$

- 2. Let $i \le m$, then $\sum_{j=1}^{n} a_{ij}z_j \le b_i$ or $\sum_{j=1}^{n} a_{ij}z_j + y_{n+i} = b_i$ then $y_{n+i} = b_i \sum_{j=1}^{n} a_{ij}z_j \ge 0$.
- 3. y_0 is a feasible solution and the matrix A_B associated with this basis is the identity, so it is invertible. We can therefore start the algorithm from this point with this basis.

4. $A_B = I_m$, A_N is the matrix with coefficients a_{ij} .

$$x_N = x_0$$

$$\begin{array}{l} \nabla f_N': (\nabla f'(y_0))_i = (\nabla f(x_0))_i \text{ if } i \in N \\ \nabla f_B': (\nabla f'(y_0))_i = 0 \text{ if } i \in B \end{array}$$

$$\nabla f_B': (\nabla f'(y_0))_i = 0 \text{ if } i \in E$$

so
$${}^t\nabla \bar{f}'(x_N) = -A_N \nabla f_B' + \nabla f_N' = \nabla f_N'$$

so ${}^t\nabla \bar{f}'(x_N) = -A_N \nabla f_B' + \nabla f_N' = \nabla f_N'$. For all $i \in \mathbb{N}$, in other words, $i \le n$, we have $y_i > 0$. Therefore, $d_i = -\nabla \bar{f}'(x_N)_i = -(\nabla f_N)_i = -(\nabla f$ $-(\nabla f(x_0))_i$.

Exercice 3 — Linear objective

Let (P) be the following program:

$$\min_{x \in \mathbb{R}^n} c \cdot x \text{ s.c. } \begin{cases} Ax = b \\ x \geq 0 \end{cases}$$
 where A is a $m \times n$ matrix with $m \leq n$ and where b is a vector of size m .

We can solve such a program with the simplex algorithm, which is similar to the reduced gradient algorithm. We recall that each non-basic variable is nul.

- 1. Let x be a basic feasible solution: a feasible solution and a basis B such that for all $i \in N$, $x_N = 0$. Compute the reduced cost gradient and, this way, find the formula of the reduced costs of the simplex algorithm.
- 2. We assume that $Ax = b; x \ge 0$ is a bounded space. Show that, during an iteration of the reduced gradient algorithm, if $d \neq \vec{0}$, there is necessarily a variable of x that is nul at the end of the iteration.
- 3. Is there necessarily a change of basis in that case?
- 4. We recall that the simplex algorithm moves, at each iteration, by interverting two variables from the basis and the non-basis. Show that, even if we start at the same point with the same basis, there exists cases where the reduced gradient algorithm and the simplex algorithm choose different directions.

▶ Correction

1. We have

$$\begin{aligned} x_N &= 0 \\ \nabla f_N &= \left(c_i\right)_{i \in N} \text{ and } \nabla f_B = \left(c_i\right)_{i \in B} \\ \text{so } {}^t \nabla \bar{f}'(x_N) &= -{}^t \nabla f_B \cdot A_B^{-1} \cdot A_N + {}^t \nabla f_N. \\ \text{We write } \bar{A} &= A_B^{-1} \cdot A_N \text{ a matrix of size } |B| \times |N| \\ \text{so } \nabla \bar{f}'(x_N)_i &= -({}^t \nabla f_B \cdot \bar{A})_i + (\nabla f_N)_i \\ \text{so } \nabla \bar{f}'(x_N)_i &= -(\sum_{j \in B} \bar{a}_{ji} c_j) + c_i \end{aligned}$$

We get then the reduced costs

2. If $d \neq \vec{0}$, then we follow the direction $x + \alpha d$ with:

$$-\alpha_1 = \max\{\alpha | x + \alpha d \ge 0\}$$

$$- \alpha_2 = \arg\min\{c \cdot (x + \alpha d) | 0 \le \alpha \le \alpha_1\}$$

However $c \cdot (x + \alpha d) = c \cdot x + \alpha c \cdot d$. Let us show that $c \cdot d < 0$.

We then have the function that is decreasing with respect to α , so we necessarily have $\alpha_1 = \alpha_2$.

We can show that there exists $d_i < 0$ for at least one i. Otherwise, for all $\alpha \ge 0$, $x + \alpha_1 d > 0$; however, we know that $A(x+\alpha d)=b$ (result from the course). Thus, we would have $\alpha_1=+\infty$, which would contradict the assumption that $Ax = b; x \ge 0$ is bounded.

Let us set $i = \arg\min\{-x_i/d_i|j \le n, d_i < 0\}$; then $\alpha_1 = -x_i/d_i$ and $(x + \alpha_1 d)_i = 0$. Therefore, the *i*-th variable x_i becomes zero at the end of the iteration.

3. There is not necessarily a change of basis.

$$\min_{x \in \mathbb{R}^n} x_1 \quad \text{s.c.} \quad \begin{cases} x_1 + x_2 + x_3 = 1\\ & x \ge 0 \end{cases}$$

 $\min_{x \in \mathbb{R}^n} x_1 \text{ s.c. } \begin{cases} x_1 + x_2 + x_3 = 1 \\ x \geq 0 \end{cases}$ We start from (0.25, 0.25, 0.5). We use the basis $B = \{3\}$. We compute the direction $d = \{3\}$. $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ (look at exercise 2 to do this calculation quickly)...

We follow the direction and move to $\begin{pmatrix} 0 \\ 0.25 \\ 0.75 \end{pmatrix}$. There is no change of basis because x_1 is not

in the basis, so its cancellation does not change anything.

4. We use the following program as an example

$$\min_{x \in \mathbb{R}^n} -x_1 \text{ s.c. } \begin{cases} x_1 + x_2 + x_3 = 4\\ -x_1 + x_2 + x_4 = 1\\ x_1 + x_2 - x_5 = 2\\ x \ge 0 \end{cases}$$

In this program, every point visited by the simplex has at least 2 zero coordinates.

We start from the point (0.5, 1.5, 2, 0, 0). We take the basis $B = \{1, 2, 3\}$. Indeed, we have

$$x_N=0$$
. We calculate the direction and find reduced costs of -0.5 for x_4 and x_5 . $d=\begin{pmatrix} 0.5\\ -0.5\\ 0.5\\ 0.5 \end{pmatrix}$. We move in the given direction, we have $\alpha_1=\alpha_2=4$, and we arrive at the point. $\begin{pmatrix} 2.5\\ 1.5\\ 0\\ 2\\ 2 \end{pmatrix}$.

We move in the given direction, we have
$$\alpha_1 = \alpha_2 = 4$$
, and we arrive at the point. $\begin{pmatrix} 1.5 \\ 1.5 \\ 0 \\ 2 \\ 2 \end{pmatrix}$.

We are no longer at a point with 2 zero coordinates, so it cannot be the direction chosen by the simplex algorithm.