
Tutorial 7 : Reduced Gradient algorithm

Operations research, 3rd semester.

2024

Exercice 1 — Simple example.

Soit (P ) le problème suivant :

min
x∈R2

f(x) = x2
1 + 4x2

2 s.c.


x1 + 2x2 ≥ 1

−x1 + x2 ≤ 0

x1 ≥ 0

x2 ≥ 0

1. Write the augmented form of (P ) using two new variables x3 and x4.
2. Draw the graphical representation of the problem, include x3 and x4 on the drawing.

3. Apply the algorithm from P0 =


1
1
2
0

 and the basis B = {1, 3} (3 iterations).

4. Check that the point satisfies the Karush-Khun-Tucker conditions.

▶ Correction

1. min
x∈R2

f(x) = x2
1 + 4x2

2 s.c.


x1 + 2x2 − x3 = 1

−x1 + x2 + x4 = 0

x1, x2, x3, x4 ≥ 0

2. The equation of an ellipse with semi-major axis a and semi-minor axis b centered at the
origin is x2/a2 + y2/b2 = 1.
So x2

1 + 4x2
2 = R is the equation of an ellipse such that :{√

R
a2 = 1
√
R

b2 = 4

So a = 2b =
√
R.

We therefore draw ellipses around the origin that get increasingly smaller with a = 2b until
we exit the set of feasible solutions ; the point where we exit indicates the optimal solution.
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•
Opt = (0.5, 0.25)

•

≃
x 3

≃
x
4

3. We start from P0 =


1
1
2
0

 with the base B = {1, 3}, so N = {2, 4}.

The matrix A is
(

1 2 −1 0
−1 1 0 1

)
; the rank is 2.

The gradient is ∇f(P0) =


2
8
0
0


We compute AB , AN , xB , xN , ∇fB and ∇fN :

AB =

(
1 −1
−1 0

)
, AN =

(
2 0
1 1

)
xB =

(
1
2

)
, xN =

(
1
0

)
∇fB =

(
2
0

)
, ∇fN =

(
8
0

)
The matrix AB is invertible and A−1

B =

(
0 −1
−1 −1

)
.

We can compute the reduced gradient :

t∇f̄(xN ) = − t∇fB ·A−
B1 ·AN + t∇fN

=
(
2 0

)
·
(
1 1
3 1

)
+

(
8 0

)
=

(
10 2

)
Second method : explicitely compute f̄(xN ).

f(x) = x2
1 + 4x2

2

f̄(xN ) = (x2 + x4)
2 + 4x2

2

= 5x2
2 + x2

4 + 2x2x4

So ∇f̄(xN ) =

(
10x2 + 2x4

2x4 + 2x2

)
=

(
10
2

)
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We compute now the direction dN =

(
−10
0

)
← ∇f̄(xN )x2

> 0 et x2 ̸= 0
← ∇f̄(xN )x4

> 0 et x4 = 0

We deduce dB = −A−1
B ANdN =

(
−10
−30

)
(x1)
(x3)

The direction is not null, we search then α1 = the maximum α ≥ 0 such that P0 + α · d ≥ 0.

We have then


1− 10α ≥ 0

1− 10α ≥ 0

2− 30α ≥ 0

0− 0α ≥ 0

So α1 = 1
15 .

We are now looking for the α between 0 and α1 that minimizes f(P0 + αd).

g(α) = f(P0 + αd) = (1− 10α)2 + 4(1− 10α)2

= 5(1− 10α)2

g′(α) = −100(1− 10α)

g′(α) ≤ 0

⇔ α ≤ 1

10

The function g is therefore decreasing between 0 and α1 ≤ 1
10 , we set α2 = α1 = 1

15 .

We move to P1 = P0 +
1
15d =


1/3
1/3
0
0


We have x3 that is zero. Therefore, we need to change the basis. We try to replace x3 with
x2 in the basis (since x2 ≥ x4).

Let B′ = {1, 2}, We have AB′ =

(
1 2
−1 1

)
of determinant 3, hence invertible. We can

therefore perform this change of basis.
We now have B = {1, 2} and N = 3, 4.

The gradient is ∇f(P0) =


2/3
8/3
0
0


We compute AB , AN , xB , xN , ∇fB and ∇fN :

AB =

(
1 2
−1 1

)
, AN =

(
−1 0
0 1

)
xB =

(
1/3
1/3

)
, xN =

(
0
0

)
∇fB =

(
2/3
8/3

)
, ∇fN =

(
0
0

)
AB is invertible and A−1

B =

(
1/3 −2/3
1/3 1/3

)
.

One can thus calculate the reduced gradient :
t∇f̄(xN ) = − t∇fB ·A−

B1 ·AN + t∇fN

=
(
2/3 8/3

)
·
(
−1/3 −1/3
−2/3 1/3

)
+

(
0 0

)
=

(
10/9 −4/9

)
We compute the direction dN =

(
0

4/9

)
← ∇f̄(xN )x3

> 0 et x3 = 0
← ∇f̄(xN )x4 < 0 et x4 ̸= 0
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We deduce dB = −A−1
B ANdN =

(
8/27
−4/27

)
(x1)
(x2)

The direction is non-zero, so we are looking for α1 = the maximum α ≥ 0 such that P1+α·d ≥
0.

We then have


1/3 + 8/27α ≥ 0

1/3− 4/27α ≥ 0

0 + 0α ≥ 0

0 + 4/9α ≥ 0

So α1 = 9
4 .

We are now looking for the α between 0 and α1 that minimizes f(P0 + αd).

g(α) = f(P0 + αd) = (1/3 + 8/27α)2 + 4(1/3− 4/27α)2

g′(α) = 2 ∗ 8/27 ∗ (1/3 + 8/27α)− 8 ∗ 4/27 ∗ (1/3− 4/27α)

g′(α) = −1/3 + 16/27 · α
g′(α) ≤ 0

⇔ α ≤ 9

16

The function g is therefore decreasing between 0 and 9
16 ≤ α1, we set α2 = 9

16 .

We move to P2 = P1 +
9
16d =


1/2
1/4
0

1/4


We do not have x1 = 0 or x2 = 0, we keep the same basis.
We compute xB , xN , ∇fB and ∇fN :

xB =

(
1/2
1/4

)
, xN =

(
0

1/4

)
∇fB =

(
1
2

)
, ∇fN =

(
0
0

)
We compute the reduced gradient :

t∇f̄(xN ) = − t∇fB ·A−
B1 ·AN + t∇fN

=
(
1 2

)
·
(
−1/3 −1/3
−2/3 1/3

)
+

(
0 0

)
=

(
1 0

)
We compute the direction dN =

(
0
0

)
← ∇f̄(xN )x3

> 0 et x3 = 0
← ∇f̄(xN )x4

= 0 et x4 ̸= 0

The direction dN is zero, so we stop and the (KKT) conditions are satisfied.
4. We look for λ1, λ2, λ3, λ4 ≥ 0, µ1, µ2 ∈ R such that
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∇f(P2) +
4∑

i=1

λi∇gi(P2) +
2∑

i=1

µj∇hj(P2) = 0

λigi(P2) = 0 ∀i ≤ 4


1

2

0

0

+ λ1


−1
0

0

0

+ λ2


0

−1
0

0

+ λ3


0

0

−1
0

+ λ4


0

0

0

−1

+ µ1


1

2

−1
0

+ µ2


−1
1

0

1

 = 0

λ11/2 = 0

λ21/4 = 0

λ30 = 0

λ411/4 = 0


1

2

0

0

+ λ3


0

0

−1
0

+ µ1


1

2

−1
0

+ µ2


−1
1

0

1

 = 0

λ1 = 0

λ2 = 0

λ4 = 0

We set µ2 = 0, µ1 = −1 and λ3 = 1 and the system is then satisfied.

Exercice 2 — Reduced gradient and standard form

Let (P ) be the following program.

min
x∈Rn

f(x) s.c.


n∑

j=1

aijxj ≤ bi ∀i ∈ J1;mK

x ≥ 0
We assume that the functions gi are linear and that there exists a feasible solution z > 0.

1. Write the augmented form of (P ) by adding m variables. Let y1, y2, . . . , yn+m be the variables
of that new program and f ′ be the new objective function.

2. Show that if we set


y1
y2
. . .
yn

 to z then, for every i ∈ J1;mK, yn+i ≥ 0. Let y0 be that solution.

3. Show that it is possible to start the reduced gradient algorithm from y0 with the basis
B = {n+ i, i ∈ J1;mK}.

4. Compute the direction d obtained at the first iteration and show that i ≤ n, di = −(∇f(z))i.

▶ Correction

1. The augmented form

min
y∈Rn+m

f ′(y) s.c.


n∑

j=1

aijyj + yn+i = bi ∀i ∈ J1;mK

y ≥ 0

-

2. Let i ≤ m, then
n∑

j=1

aijzj ≤ bi or
n∑

j=1

aijzj + yn+i = bi then yn+i = bi −
n∑

j=1

aijzj ≥ 0.

3. y0 is a feasible solution and the matrix AB associated with this basis is the identity, so it is
invertible. We can therefore start the algorithm from this point with this basis.
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4. AB = Im, AN is the matrix with coefficients aij .
xN = x0

∇f ′
N : (∇f ′(y0))i = (∇f(x0))i if i ∈ N

∇f ′
B : (∇f ′(y0))i = 0 if i ∈ B

so t∇f̄ ′(xN ) = −AN∇f ′
B +∇f ′

N = ∇f ′
N .

For all i ∈ N, in other words, i ≤ n, we have yi > 0. Therefore, di = −∇f̄ ′(xN )i = −(∇fN )i =
−(∇f(x0))i.

6



Exercice 3 — Linear objective

Let (P ) be the following program :

min
x∈Rn

c · x s.c.

{
Ax = b

x ≥ 0

where A is a m× n matrix with m ≤ n and where b is a vector of size m.
We can solve such a program with the simplex algorithm, which is similar to the reduced

gradient algorithm. We recall that each non-basic variable is nul.
1. Let x be a basic feasible solution : a feasible solution and a basis B such that for all i ∈ N ,

xN = 0. Compute the reduced cost gradient and, this way, find the formula of the reduced
costs of the simplex algorithm.

2. We assume that Ax = b;x ≥ 0 is a bounded space. Show that, during an iteration of the
reduced gradient algorithm, if d ̸= 0⃗, there is necessarily a variable of x that is nul at the
end of the iteration.

3. Is there necessarily a change of basis in that case ?
4. We recall that the simplex algorithm moves, at each iteration, by interverting two variables

from the basis and the non-basis. Show that, even if we start at the same point with the same
basis, there exists cases where the reduced gradient algorithm and the simplex algorithm
choose different directions.

▶ Correction

1. We have
xN = 0

∇fN =
(
ci
)
i∈N

and ∇fB =
(
ci
)
i∈B

so t∇f̄ ′(xN ) = − t∇fB ·A−1
B ·AN + t∇fN .

We write Ā = A−1
B ·AN a matrix of size |B| × |N |

so ∇f̄ ′(xN )i = −(t∇fB · Ā)i + (∇fN )i
so ∇f̄ ′(xN )i = −(

∑
j∈B

ājicj) + ci

We get then the reduced costs
2. If d ̸= 0⃗, then we follow the direction x+ αd with :

— α1 = max{α|x+ αd ≥ 0}
— α2 = argmin{c · (x+ αd)|0 ≤ α ≤ α1}

However c · (x+ αd) = c · x+ αc · d. Let us show that c · d < 0.
We then have the function that is decreasing with respect to α, so we necessarily have
α1 = α2.
We can show that there exists di < 0 for at least one i. Otherwise, for all α ≥ 0, x+α1d > 0 ;
however, we know that A(x+αd) = b (result from the course). Thus, we would have α1 = +∞,
which would contradict the assumption that Ax = b;x ≥ 0 is bounded.
Let us set i = argmin{−xj/dj |j ≤ n, dj < 0} ; then α1 = −xi/di and (x + α1d)j = 0.
Therefore, the i-th variable xi becomes zero at the end of the iteration.

3. There is not necessarily a change of basis.
For example, with the following program :

min
x∈Rn

x1 s.c.

{
x1 + x2 + x3 = 1

x ≥ 0

We start from (0.25, 0.25, 0.5). We use the basis B = {3}. We compute the direction d =−10
1

 (look at exercice 2 to do this calculation quickly)..

We follow the direction and move to

 0
0.25
0.75

. There is no change of basis because x1 is not

in the basis, so its cancellation does not change anything.
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4. We use the following program as an example

min
x∈Rn

−x1 s.c.


x1 + x2 + x3 = 4

−x1 + x2 + x4 = 1

x1 + x2 − x5 = 2

x ≥ 0

In this program, every point visited by the simplex has at least 2 zero coordinates.
We start from the point (0.5, 1.5, 2, 0, 0). We take the basis B = {1, 2, 3}. Indeed, we have

xN = 0. We calculate the direction and find reduced costs of −0.5 for x4 and x5. d =


0.5
0
−0.5
0.5
0.5

.

We move in the given direction, we have α1 = α2 = 4, and we arrive at the point.


2.5
1.5
0
2
2

.

We are no longer at a point with 2 zero coordinates, so it cannot be the direction chosen by
the simplex algorithm.
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