Tutorial 8 : Penalties and Barrier methods

Operations research, 3rd semester.

2024

Exercice 1 — Beltrami penalties

We want to minimize f(x) = x1 + z2 such that 22 — 2o < 2.
1. Solve the problem using the penalties method, with the penalty of Courant-Beltrami.

2. Same question with the equivalent following problem : minimize f(x) = z1 + x2 such that

3 —xg + 2% = 2.

» Correction
1. We set g(z) = 23 — 29 — 2 and P(z) = g*(2)? = max(g(x),0)?; we want to minimize

4(w, 1) = F(z) + - P() for all .
An optimal solution x,, to this problem is a critical point and satisfies

0
0

Vig(zy, 1))
vf(xu) + va(xu)
Vf(zu) + 2pmax(g(z,),0)Vg(z,) =0

We consider two cases : g(z,) <0 et g(z,) >0

If g(z,) <0, :
Vf(xu) =0

(-

This is a contradiction, considering the other case : g(z,) > 0

Vf(zu) +2p9(x,)Vg(z,) =0
(1> +2u(2?y — 20 — 2) (2?{1) =0

1
1+ ZM(xil —Zu2 —2)(22,1) =0 and (osil — Ty —2) = ﬂ
7 1
T, =—= andxngzf@

We have g(z) >0 as 23 — 20 = 2 + i > 2. Finally :

lim z,= ~1/2
p——+00 *7/4

This point is the only critical point of the function ; moreover, the function ¢ does not tend

to —oo at infinity, so it is an optimal solution.
Therefore, the sequence of x,, converges, and it converges to an optimal solution of f.



2. We set h(z) = 22 — x5 + 22 — 2 and P(z) = h(z)?; we seek, for all u, to minimize q(z, u) =
f(@) +p- P(z).

An optimal solution z, to this problem is a critical point and satisfies

V(g(zu, 1) =0
Vf(zu) +uVP(z,) =0
Vf(zu) + 2uh(z,)Vh(z,) =0
1 2x,1
| +2u(aly —app+als—2) | =1 | =0
0 22,3

The third equality implies that z,3 = 0 or (z7; — z.2 + 253 — 2) = 0.

If (22

1~ Tuzt ng) —2) = 0 then the two first equalities give a contradiction

If z,,3 = 0 then we get again

1 2x 1
<1> +2p(mil —Tpo — 2) ( _‘i > =0

We then have the same solution as in the first question.

Exercice 2 — Barrier method

Solve the following problem with the barrier method : minimize f(x) = 1 + x2 such that
2
7 — T2 < 2.

» Correction
We will try the two barriers B(x) = ﬁ and B(x) = —log(—g(x)).
Let g(z) = 23 — 15 — 2 and B(x) = . We minimize ¢(x,n) = f(x) + pB(x) such that

g(z) <O0.
An optimal solution z, to this problem is a critical point and satisfies

Vig(zp, p))
vf(mu)"’,uVB( u)
)

1
V) s Vo) =
Ty
1 1% 2$#1
[ =0
(1) (7 — 20z — 2 (7 )
The second equation implies = 3’6‘ o = 1, so
ui T
-1 )
Tul = and p = (23,1 — Tp2 — 2)
-1 7
Tl = 5 and p = (22 1)2
-1
$u1—7 and Ty0 = —— £ /1t

As g(x,) < 0, we can only have z,2 = —% - Vi

7
xm:?andxﬂgz—i—&—\/ﬁ



This point is the only critical point of the function ; furthermore, the function ¢ is convex, thus it

is an optimal solution.
. -1/2
pin = (73)

The sequence of x,, converges, so it converges to an optimal solution of f.

Let us use the other barrier :

Let’s set g(z) = 23 — 22 — 2 and B(x) = —log(—g(z)). We aim to minimize q(z, 1) = f(z) +
puB(x) subject to the constraint that g(z) < 0.

An optimal solution z, to this problem is a critical point and satisfies

V(g(zu,p) =0
Vf(zu) +pVB(zy,) =0
-1
Vi(xu) —p g9(zu) =0
g 9(zp) g
(1) -t () -
1 (22, — 22 —2) \ —1
the second equality implies that m =1, so
Ty = _7 and p = (—mil + 0+ 2)
-1
Tul = - andxugz—i—i—u

We then have g(z) = —pu <0

This point is the only critical point of the function ; furthermore, the function ¢ is convex, so it is
the optimal solution.

The sequence of x,, converges, so it converges to an optimal solution of f.

Exercice 3 — Penalties and Lagrange multipliers

We consider a generic problem in which we want to minimize f(z) on R™ such that g;(z) <0
for every ¢ € [1;m] and such that h;(x) = 0 for every j € [1;p]. We apply the penalties method
with the Penalty of Beltrami P. We write q(z, ) = f(z) + pP(z) and xp = argmin g(z, k).

We assume that f, g; and h; are C'. Let 2* be an optimal solution of f, we assume z* satisfy the
linear independant constraint of qualification. Finally, we assume that the sequence xj converges
toward x*.

1. Recall the Kuhn-Tucker conditions for that problem at z*, we write A; and p; the Langrange
multipliers respectively associated with the functions g; and hj;.

2. May there exist multiple values for A;, 11; satisfying the conditions?

3. Write the gradient of g(x, k) at xj, what is the numerical value of that gradient ?

4. Deduce that lim 2kg; (z) = \; and lim 2kh;(z)) = p; if those limits exist.
k—+o00 k—+o00

» Correction
1. We write I(z) = {i|g:(xz) = 0}
The conditions are

p
There exists A; > 0 and p; € R such that Vf(z*)+ > \NVgi(z*)+ > p;Vhj(z*) = 0.
ieI(z") i=1



2. No, because the qualification for linear independence is satisfied. The vectors Vg;(x), for
i such that g;(x) = 0, and Vh;(z) are independent ; thus the values of the \; and p; are

unique.
3. We know that xy is a solution, therefore it is a critical point, so Vq(z, k)(zx) = 0
The gradient of ¢(z, k) can be written as :

Vq(z, k) (zr) = Vf(zg) + ki 29 (21)Vgi(wr) + k22hj(mk)th(xk) =0

i=1 j=1

4. If we take the limit, since f, g;, and h; are C', and lim =z = z*
k—+4oco

kll)lfoo Vi(ze) = V(")
kgrfoo Vhj(zr) = Vhj(z")
lim Vg(z, k)(xr) =0

k—+oo

Donc

k—+o00 k—+o0

m p
Vi) + ) ( lim 2kg! (zx))Vgi(z +Z lim 2kh;(zx))Vh;(z*) =0
i=1 j=1

By continuity of the g;, we can notice that, for any ¢ such that g;(z*) < 0, from a certain
rank onward, g;(z;) < 0 and therefore g;"(z)) = 0.

Thus as lim 2kg; (z) and lim 2kh;(zy) exist,

k—4o00 k— 400

p
Vf(““e%( lim  2kg (2)) Vgl Ezj Jim 2kh; (2)) V(") = 0

We deduce the value of these limits by the uniqueness of the coefficients of the Kuhn-Tucker
equality.

Exercice 4 — Internal barrier

We consider the following problem

x—1<0 (1)
17?6(161]%,]0( r)=2% sc. {—z—-1<0 (2)
—22 <0 (3)

1. Draw the graphical representation of the problem and an associated logarithmical barrier.
Does the problem satisfy the hypothesis that are needed to use the logarithmical and inverse

barriers ?
2. Whatever the answer to the previous quesiton is, try to solve the problem using a barrier
method, using a logarithmical barrier.

3. We replace the constraint —z2 < 0 by g3(x) < 0 with

1 -1
7(9:+§)2 if x < >

1 1
Vifz> =
2 2

0 otherwise
Draw the graphical representation of the problem and an associated barrier.

4. Can we solve the problem with the barrier method 7 How could we get around that problem ?

g3(x) = s.c. (-



» Correction

1. Detail, the constraint (3) is trivial. This can be easily seen from the diagram. ¢ is, as in the
lecture, the function f(z) 4+ pB(x) where B is a barrier (here logarithmic).
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The problem does not satisfy the hypothesis g3(z) < 0 ifand only if z € S, indeed, S = [—1,1]
thus S =] —1, 1] and g3(0) = 0. Therefore, we should not use logarithmic and inverse barriers
(according to the course).

However, we can see from the drawing that the minimum of the function ¢(z, u) seems to
approach 0 as p approaches 0.

2. Let us apply the logarithmic barrier nonetheless.
Let B(z) = —log(—x+1)—log(z+1) —log(—2?). We aim to minimize q(x, ) = f(z)+puB(z)
given that g(z) < 0.
An optimal solution x,, to this problem is a critical point and satisfies

Vig(zu, p) =

0
fl(xu) —|—/1VB’({E#) 0

0

) _
x”+u—xu+1 +'uxu—|—1 +u—xu

We multiply by the denomiators and simplify :
a4 (=1 =222 +p=0

we set X = xi

X*+(-1-2m)X +p=0



We solve the system

1
X=(@utD)EvV42+1)>0

1
x, = :I:\/Q((Qu +1)£4p?+1)

We check that g1(x,) <0, g2(z,) <0, and g3(z,) < 0 for all x> 0.

These points are the only critical points of the function ; moreover, the function ¢ is convex,
so one of them is an optimal solution. In this case, it is \/%((2u +1)— 4?2 +1)

lim z,, = 0.
pn—0

Each of the sequences of x,, converges, so it converges to an optimal solution of f : x = 0.

3. We get the following drawing

IN
f(x)
2
L] eeeeenns
R —r—1 -—----
N
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4. If we apply the method, we see that we will tend towards x = :i:% instead of 0. We could
solve this problem by relaxing the constraints a bit :

g1 ({E) — & S 0 (1)
We solve mellg fl@) =2 sc. S ga(x)—e<0 (2)
x
g3(x) —e <0 (3)
We then let € tend towards 0. The method has the drawback of possibly using the set of
infeasible solutions, unlike the classical barrier method.




