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Exercice 1 — Beltrami penalties

We want to minimize f(x) = x1 + x2 such that x2
1 − x2 ≤ 2.

1. Solve the problem using the penalties method, with the penalty of Courant-Beltrami.
2. Same question with the equivalent following problem : minimize f(x) = x1 + x2 such that

x2
1 − x2 + x2

3 = 2.

▶ Correction

1. We set g(x) = x2
1 − x2 − 2 and P (x) = g+(x)2 = max(g(x), 0)2 ; we want to minimize

q(x, µ) = f(x) + µ · P (x) for all µ.
An optimal solution xµ to this problem is a critical point and satisfies

∇(q(xµ, µ)) = 0

∇f(xµ) + µ∇P (xµ) = 0

∇f(xµ) + 2µmax(g(xµ), 0)∇g(xµ) = 0

We consider two cases : g(xµ) ≤ 0 et g(xµ) > 0

If g(xµ) ≤ 0, :

∇f(xµ) = 0(
1
1

)
= 0

This is a contradiction, considering the other case : g(xµ) > 0

∇f(xµ) + 2µg(xµ)∇g(xµ) = 0(
1
1

)
+ 2µ(x2

µ1 − xµ2 − 2)

(
2xµ1

−1

)
= 0

1 + 2µ(x2
µ1 − xµ2 − 2)(2xµ1) = 0 and (x2

µ1 − xµ2 − 2) =
1

2µ

x1 = −1

2
and x2 = −7

4
− 1

2µ

We have g(x) ≥ 0 as x2
1 − x2 = 2 + 1

2k ≥ 2. Finally :

lim
µ→+∞

xµ =

(
−1/2
−7/4

)
This point is the only critical point of the function ; moreover, the function q does not tend
to −∞ at infinity, so it is an optimal solution.
Therefore, the sequence of xµ converges, and it converges to an optimal solution of f .
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2. We set h(x) = x2
1 − x2 + x2

3 − 2 and P (x) = h(x)2 ; we seek, for all µ, to minimize q(x, µ) =
f(x) + µ · P (x).
An optimal solution xµ to this problem is a critical point and satisfies

∇(q(xµ, µ)) = 0

∇f(xµ) + µ∇P (xµ) = 0

∇f(xµ) + 2µh(xµ)∇h(xµ) = 01
1
0

+ 2µ(x2
µ1 − xµ2 + x2

µ3 − 2)

2xµ1

−1
2xµ3

 = 0

The third equality implies that xµ3 = 0 or (x2
µ1 − xµ2 + x2

µ3 − 2) = 0.

If (x2
µ1 − xµ2 + x2

µ3 − 2) = 0 then the two first equalities give a contradiction

If xµ3 = 0 then we get again (
1
1

)
+ 2µ(x2

µ1 − xµ2 − 2)

(
2xµ1

−1

)
= 0

We then have the same solution as in the first question.

Exercice 2 — Barrier method

Solve the following problem with the barrier method : minimize f(x) = x1 + x2 such that
x2
1 − x2 ≤ 2.

▶ Correction
We will try the two barriers B(x) = −1

g(x) and B(x) = − log(−g(x)).
Let g(x) = x2

1 − x2 − 2 and B(x) = −1
g(x) . We minimize q(x, µ) = f(x) + µB(x) such that

g(x) < 0.
An optimal solution xµ to this problem is a critical point and satisfies

∇(q(xµ, µ)) = 0

∇f(xµ) + µ∇B(xµ) = 0

∇f(xµ) + µ
1

g(xµ)2
∇g(xµ) = 0(

1
1

)
+

µ

(x2
µ1 − xµ2 − 2)2

(
2xµ1

−1

)
= 0

The second equation implies µ
(x2

µ1−xµ2−2)2
= 1, so

xµ1 =
−1

2
and µ = (x2

µ1 − xµ2 − 2)2

xµ1 =
−1

2
and µ = (xµ2 −

7

4
)2

xµ1 =
−1

2
and xµ2 = −7

4
±√

µ

As g(xµ) < 0, we can only have xµ2 = − 7
4 −√

µ

xµ1 =
−1

2
and xµ2 = −7

4
+

√
µ
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This point is the only critical point of the function ; furthermore, the function q is convex, thus it
is an optimal solution.

lim
µ→0

xµ =

(
−1/2
−7/4

)
The sequence of xµ converges, so it converges to an optimal solution of f .
Let us use the other barrier :
Let’s set g(x) = x2

1 − x2 − 2 and B(x) = − log(−g(x)). We aim to minimize q(x, µ) = f(x) +
µB(x) subject to the constraint that g(x) < 0.

An optimal solution xµ to this problem is a critical point and satisfies

∇(q(xµ, µ)) = 0

∇f(xµ) + µ∇B(xµ) = 0

∇f(xµ)− µ
−1

−g(xµ)
∇g(xµ) = 0(

1
1

)
− µ

(x2
µ1 − xµ2 − 2)

(
2xµ1

−1

)
= 0

the second equality implies that −µ
(x2

µ1−xµ2−2)
= 1, so

xµ1 =
−1

2
and µ = (−x2

µ1 + xµ2 + 2)

xµ1 =
−1

2
and xµ2 = −7

4
+ µ

We then have g(x) = −µ < 0

This point is the only critical point of the function ; furthermore, the function q is convex, so it is
the optimal solution.

lim
µ→0

xµ =

(
−1/2
−7/4

)
The sequence of xµ converges, so it converges to an optimal solution of f .

Exercice 3 — Penalties and Lagrange multipliers

We consider a generic problem in which we want to minimize f(x) on Rn such that gi(x) ≤ 0
for every i ∈ J1;mK and such that hj(x) = 0 for every j ∈ J1; pK. We apply the penalties method
with the Penalty of Beltrami P . We write q(x, µ) = f(x) + µP (x) and xk = argmin q(x, k).

We assume that f , gi and hj are C1. Let x∗ be an optimal solution of f , we assume x∗ satisfy the
linear independant constraint of qualification. Finally, we assume that the sequence xk converges
toward x∗.

1. Recall the Kuhn-Tucker conditions for that problem at x∗, we write λi and µj the Langrange
multipliers respectively associated with the functions gi and hj .

2. May there exist multiple values for λi, µj satisfying the conditions ?
3. Write the gradient of q(x, k) at xk, what is the numerical value of that gradient ?
4. Deduce that lim

k→+∞
2kg+i (xk) = λi and lim

k→+∞
2khj(xk) = µj if those limits exist.

▶ Correction

1. We write I(x) = {i|gi(x) = 0}
The conditions are

There exists λi ≥ 0 and µj ∈ R such that ∇f(x∗) +
∑

i∈I(x∗)

λi∇gi(x
∗) +

p∑
i=1

µj∇hj(x
∗) = 0.

3



2. No, because the qualification for linear independence is satisfied. The vectors ∇gi(x), for
i such that gi(x) = 0, and ∇hj(x) are independent ; thus the values of the λi and µj are
unique.

3. We know that xk is a solution, therefore it is a critical point, so ∇q(x, k)(xk) = 0

The gradient of q(x, k) can be written as :

∇q(x, k)(xk) = ∇f(xk) + k

m∑
i=1

2g+i (xk)∇gi(xk) + k

p∑
j=1

2hj(xk)∇hj(xk) = 0

4. If we take the limit, since f , gi, and hj are C1, and lim
k→+∞

xk = x∗

lim
k→+∞

∇f(xk) = ∇f(x∗)

lim
k→+∞

∇gi(xk) = ∇gi(x
∗)

lim
k→+∞

∇hj(xk) = ∇hj(x
∗)

lim
k→+∞

∇q(x, k)(xk) = 0

Donc

∇f(x∗) +

m∑
i=1

( lim
k→+∞

2kg+i (xk))∇gi(x
∗) +

p∑
j=1

( lim
k→+∞

2khj(xk))∇hj(x
∗) = 0

By continuity of the gi, we can notice that, for any i such that gi(x
∗) < 0, from a certain

rank onward, gi(xk) < 0 and therefore g+i (xk) = 0.

Thus as lim
k→+∞

2kg+i (xk) and lim
k→+∞

2khj(xk) exist,

∇f(x∗) +
∑

i∈I(x∗)

( lim
k→+∞

2kg+i (xk))∇gi(x
∗) +

p∑
j=1

( lim
k→+∞

2khj(xk))∇hj(x
∗) = 0

We deduce the value of these limits by the uniqueness of the coefficients of the Kuhn-Tucker
equality.

Exercice 4 — Internal barrier

We consider the following problem

min
x∈R

f(x) = x2 s.c.


x− 1 ≤ 0 (1)

−x− 1 ≤ 0 (2)

−x2 ≤ 0 (3)

1. Draw the graphical representation of the problem and an associated logarithmical barrier.
Does the problem satisfy the hypothesis that are needed to use the logarithmical and inverse
barriers ?

2. Whatever the answer to the previous quesiton is, try to solve the problem using a barrier
method, using a logarithmical barrier.

3. We replace the constraint −x2 ≤ 0 by g3(x) ≤ 0 with

g3(x) = s.c.


−(x+

1

2
)2 if x ≤ −1

2

−(x− 1

2
)2 if x ≥ 1

2
0 otherwise

Draw the graphical representation of the problem and an associated barrier.
4. Can we solve the problem with the barrier method ? How could we get around that problem ?
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▶ Correction

1. Detail, the constraint (3) is trivial. This can be easily seen from the diagram. q is, as in the
lecture, the function f(x) + µB(x) where B is a barrier (here logarithmic).

f(x)

−x2

x− 1

−x− 1

q(x, 0.5)

q(x, 0.3)

q(x, 0.1)

x

The problem does not satisfy the hypothesis g3(x) < 0 if and only if x ∈ S̊, indeed, S = [−1, 1]
thus S̊ =]−1, 1[ and g3(0) = 0. Therefore, we should not use logarithmic and inverse barriers
(according to the course).
However, we can see from the drawing that the minimum of the function q(x, µ) seems to
approach 0 as µ approaches 0.

2. Let us apply the logarithmic barrier nonetheless.
Let B(x) = − log(−x+1)− log(x+1)− log(−x2). We aim to minimize q(x, µ) = f(x)+µB(x)
given that g(x) < 0.
An optimal solution xµ to this problem is a critical point and satisfies

∇(q(xµ, µ)) = 0

f ′(xµ) + µ∇B′(xµ) = 0

2xµ + µ
1

−xµ + 1
+ µ

−1

xµ + 1
+ µ

2

−xµ
= 0

We multiply by the denomiators and simplify :

x4
µ + (−1− 2µ)x2

µ + µ = 0

we set X = x2
µ

X2 + (−1− 2µ)X + µ = 0
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We solve the system

X =
1

2
((2µ+ 1)±

√
4µ2 + 1) > 0

xµ = ±
√

1

2
((2µ+ 1)±

√
4µ2 + 1)

We check that g1(xµ) < 0, g2(xµ) < 0, and g3(xµ) < 0 for all µ > 0.

These points are the only critical points of the function ; moreover, the function q is convex,

so one of them is an optimal solution. In this case, it is
√

1
2 ((2µ+ 1)−

√
4µ2 + 1)

lim
µ→0

xµ = 0.

Each of the sequences of xµ converges, so it converges to an optimal solution of f : x = 0.
3. We get the following drawing

f(x)

−x2

x− 1

−x− 1

q(x, 0.5)

q(x, 0.3)

q(x, 0.1)

x

4. If we apply the method, we see that we will tend towards x = ± 1
2 instead of 0. We could

solve this problem by relaxing the constraints a bit :

We solve min
x∈R

f(x) = x2 s.c.


g1(x)− ε ≤ 0 (1)

g2(x)− ε ≤ 0 (2)

g3(x)− ε ≤ 0 (3)

We then let ε tend towards 0. The method has the drawback of possibly using the set of
infeasible solutions, unlike the classical barrier method.
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