
Tutorial 8 : Queuing

Operations research, 3rd semester.

2024

Exercice 1 — File d’attente (6 points)

We consider a queue. For each of the following cases, where we describe the birth rate λn in
arrival per second and the death rate µn in leaving per second par seconde if there exists a stationary

distribution. In that case, what is the value Pn for every n ≥ 0. We recall thatexp(x) =
+∞∑
n=0

xn

n! .

1. λn = 3, µn = 5

▶ Correction

If λn and µn are constant with λn < µn, there is a stationary distribution. We then have
P0 = 1− 3

5 and Pn = (1− 3
5 ) · (

3
5 )

n.
2. λn = 5, µn = 3

▶ Correction

If λn and µn are constant with λn > µn, there is no stationary distribution.
3. λn = (n+ 1), µn = 100

▶ Correction

There is a stationnary distribution if and only ifthe serie
+∞∑
n=1

λ0·λ1···λn−1

µ1·µ2···µn
converges. However,

λ0·λ1···λn−1

µ1·µ2···µn
≃n→+∞

n!
100n . This sequence does not converge toward 0 thus the serie does not

converge. There is no stationary distribution.
4. λn = (n+ 1), µn = n2

▶ Correction

There is a stationary distribution if and only if
+∞∑
n=1

λ0·λ1···λn−1

µ1·µ2···µn
converges. In this case λ0·λ1···λn−1

µ1·µ2···µn
=

n!
n!2 = 1

n! . This serie converges toward exp(1)− 1.

We then have P0(1 +
+∞∑
n=1

λ0·λ1···λn−1

µ1·µ2···µn
) = 1

P0 = 1/e

Pn = 1
n!1/e.

Exercice 2 — Supermarket queue

In a supermarket, 5 clients can go through a checkout every 10 minutes. While there are 2
clients or less in the queue, 2 clients come every 5 minutes. After that, 15 clients appear every 20
minutes. If there are 9 clients or less, only one checkout is open. If there are more than 10 clients,
2 more checkouts open.

1. What is the graphical representation of that queue ?
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▶ Correction

We use the same time unit. We use in this case intervals of 10 minuts.
We set µ = 5, λ = 4 and λ′ = 7.5.
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2. What is the value of P ′
n(t) for every n as a function of Pm(t) for every m ∈ N ?

▶ Correction

P0(t+ dt) = P0(t) · (1− λdt) + P1(t) · µdt+ o(dt)

⇒ P ′
0(t) = −λP0(t) + µP1(t)

For i ∈ J1; 2K,

Pi(t+ dt) = Pi−1(t) · λdt+ Pi(t) · (1− (λ+ µ)dt) + Pi+1(t) · µdt+ o(dt)

⇒ P ′
i (t) = λPi−1(t)− (λ+ µ)Pi(t) + µPi+1(t)

For i = 3,

Pi(t+ dt) = Pi−1(t) · λdt+ Pi(t) · (1− (λ′ + µ)dt) + Pi+1(t) · µdt+ o(dt)

⇒ P ′
i (t) = λPi−1(t)− (λ′ + µ)Pi(t) + µPi+1(t)

For i ∈ J4; 8K,

Pi(t+ dt) = Pi−1(t) · λ′dt+ Pi(t) · (1− (λ′ + µ)dt) + Pi+1(t) · µdt+ o(dt)

⇒ P ′
i (t) = λ′Pi−1(t)− (λ′ + µ)Pi(t) + µPi+1(t)

For i = 9,

Pi(t+ dt) = Pi−1(t) · λ′dt+ Pi(t) · (1− (λ′ − µ)dt) + Pi+1(t) · 3µdt+ o(dt)

⇒ P ′
i (t) = λ′Pi−1(t)− (λ′ + µ)Pi(t) + 3µPi+1(t)

For i ≥ 10,

Pi(t+ dt) = Pi−1(t) · λ′dt+ Pi(t) · (1− λ′ − 3µ)dt+ Pi+1(t) · 3µdt+ o(dt)

⇒ P ′
i (t) = λ′Pi−1(t)− (λ′ + 3µ)Pi(t) + 3µPi+1(t)

3. Prove that a stationary distribution exists.

▶ Correction

After some n, the birth and death rates are constant and the former is lower than the latter.
4. What is the value of Pn for every n in the stationary distribution ?
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▶ Correction

We start by computing Pi as a function of P0 with :

Pi =
λ0λ · · ·λn−1

µ1µ2 · · ·µn
P0

Pour i ∈ J1; 3K, Pi =

(
λ

µ

)i

P0

Pour i ∈ J4; 9K, Pi =

(
λ

µ

)3(
λ′

µ

)i−3

P0

Pour i ≥ 10 Pi =

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)i−9

P0

Or

+∞∑
i=0

Pi = 1

P0 + P0

3∑
i=1

(
λ

µ

)i

+

P0

9∑
i=4

(
λ

µ

)3(
λ′

µ

)i−3

+

P0

+∞∑
i=10

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)i−9

= 1

Donc

P0(1 + 1.95 + 15.96 + 5.83) = 1

P0 = 0.040

P1 = 0.032

P2 = 0.025

P3 = 0.020

P4 = 0.031

P5 = 0.047

P6 = 0.070

P7 = 0.105

P8 = 0.157

P9 = 0.236

P10 = 0.11

P11 = 0.059

P12 = 0.029

. . .

We get the following curve, that is coherent with the intuition we have about the number of
people on the queue : with less than 2 people, more people leave than the number of arrival,
we converge toward 0 ; otherwise below 9 people, more people come, and above 9 people,
more people leave then 9 is a stable equilibrium.

5. What is the mean number of people waiting in the queue (and thus not going through a
checkout) ?
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Figure 1 –

▶ Correction

We compute
9∑

i=1

(i− 1) · Pi +

+∞∑
i=10

(i− 3) · Pi

9∑
i=1

(i− 1) · Pi = P0 ·

(
3∑

i=1

(i− 1)

(
λ

µ

)i
)

+ P0 ·

(
9∑

i=4

(i− 1)

(
λ

µ

)3(
λ′

µ

)i−3
)

= P0 · (1.66 + 104.98) = 4.31

+∞∑
i=10

(i− 3) · Pi =

+∞∑
i=10

(i− 3)

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)i−9

P0

=

+∞∑
i=7

i

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)i−6

P0

=

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)−5

·

(
+∞∑
i=1

i

(
λ′

3µ

)i−1

P0 −
6∑

i=1

i

(
λ′

3µ

)i−1

P0

)

=

(
λ

µ

)3(
λ′

µ

)6(
λ′

3µ

)−5

·

(
1

(1− λ′/(3µ))2
−

6∑
i=1

i

(
λ′

3µ

)i−1

P0

)
= 186.62 · (0.16− 0.15) = 1.866

Donc
9∑

i=1

(i− 1) · Pi +

+∞∑
i=10

(i− 3) · Pi = 6.176

Exercice 3 — Interversion of the birth and death rates

We consider a paradise (for instance, of the pastafarian religion). A dead person comes to the
paradise until it is reincarnated and rebirth on Earth.

The mean number of death is 2000 people per second in the world. Those numbers do not
depend on the number of people in the paradise.

At the reincarnation service, two pirates are in charge : Blackbeard and Barbarossa. Blackbeard
reincarnates 60000 people per minutes on average and works only if there are 10000 people or less
in the paradise. Barbarossa reincarnates 180000 people on average and works only if there are 5001
people or more in the paradise.

Let λ = 2000, µ = 1000, µ′ = 3000, A = 5000 and B = 10000.
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1. Draw the graphical representation of the queue process associated with the deaths and rein-
carnations in the Pastafarian paradise. Use the notations λ, µ, µ′, A et B.

▶ Correction

Be careful with the birth and death rate which are here respectivement a dead entering the
paradise rate and a reincarnation rate. By setting every rate in people per second, we get µ,
µ+µ′ and µ′ as the reincarnation rate when there are respectively at most A, between A+1
and B, and at least B + 1 people in the queue.

0 1 A− 1 A A+ 1 B − 1 B B + 1

λ

µ

λ

µ

λ

µ

λ

µ+ µ′

λ

µ+ µ′

λ

µ+ µ′

λ

µ′

λ

µ′

2. If we assume that there exists a stationary distribution, why can we assume that this distri-
bution is reached ?

▶ Correction

We can assume that people have lived and died for a very long time. The stationary distri-
bution is then reached.

3. Show that the stationnary distribution exists.

▶ Correction

After some value of n, the birth and deat rates are equals to λ and µ′. As λ < µ′, there is a
stationary distribution.

4. Let Pn be the probability that there are n people in the paradise. Describe, as a function
of λ, µ, µ′, A, B, P0 and n, the probability Pn. Using the numerical values, obtain Pn as a
function of A, P0 and n.

▶ Correction

For all 1 ≤ n ≤ A,Pn =
(

λ
µ

)n
P0 = 2nP0.

For all A+ 1 ≤ n ≤ B = 2A,Pn =
(

λ
µ

)A (
λ

µ+µ′

)n−A

P0 = 2A
(
1
2

)n−A
P0 = 22A 1

2nP0.

For all B + 1 = 2A + 1 ≤ n, Pn =
(

λ
µ

)A (
λ

µ+µ′

)B−A (
λ
µ′

)n−B

P0 = 2A
(
1
2

)A ( 2
3

)n−2A
P0 =(

3
2

)2A ( 2
3

)n
P0.

5. Show that P0 = 1/
(
2A+1 + 2A

)
.

▶ Correction
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Donc

P0 =
1

1 +
A∑

n=1
2n +

2A∑
n=A+1

22A 1
2n +

+∞∑
n=2A+1

(
3
2

)2A ( 2
3

)n (1)

P0 =
1

2A+1 − 1 +
2A∑

n=A+1

22A 1
2n +

+∞∑
n=2A+1

(
3
2

)2A ( 2
3

)n (2)

P0 =
1

2A+1 − 1 + 22A( 1
2A

− 1
22A

) +
+∞∑

n=2A+1

(
3
2

)2A ( 2
3

)n (3)

P0 =
1

2A+1 − 1 + (2A − 1) +
+∞∑

n=2A+1

(
3
2

)2A ( 2
3

)n (4)

P0 =
1

2A+1 − 1 + (2A − 1) +
(
3
2

)2A
3( 23 )

2A+1
(5)

P0 =
1

2A+1 − 1 + (2A − 1) + 2
(6)

P0 =
1

2A+1 + 2A
(7)
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Exercice 4 — Queues and curves We consider a queue with a birth rate λn and a

death rate µn. We assume that after some value n, the rates are constant and equal µ et λ, and
we assume that µ > λ.

We drawn 4 graphics with three curves P0(t), P1(t) and P2(t) depending on t. For each graphic,
could the curves correspond to the probability that there are 0, 1 or 2 people in the queue ?

▶ Correction
There is a stationary distribution as µ > λ so the curves should converge after some time. This

eliminates the upper right curves. The curves on the below left part are not possible as the sum of
the probabilities is greater than 1. For the two others, there is no clear counter argument.

Exercice 5 — Queue of pairs

A famous hairdresser is in high demand but does not take appointments. So there is always a
long queue. We want to measure it. We realize that there are in fact people going to this hairdresser
because he offers discount vouchers for pairs of people. So we must consider that people arrive not
one by one in the queue but two by two. On the other hand, they always leave one by one. We
therefore rewrite the arrival and departure probabilities as follows :

Pr(X(t+ dt)−X(t) = 2 |X(t) = n) = Lndt+ o(dt)

Pr(X(t+ dt)−X(t) = −1 |X(t) = n > 0) = µndt+ o(dt)

Pr(X(t+ dt)−X(t) = 0 |X(t) = n > 0) = (1− Ln − µn)dt+ o(dt)

Pr(X(t+ dt)−X(t) = 0 |X(t) = 0) = (1− L0)dt+ o(dt)

Pr(X(t+ dt)−X(t) ̸∈ {−1, 0, 2} |X(t) = n) = 0 + o(dt)

We write Pn(t) the probability that there are n people in the queue at time t and Pn the
probability in the stationary distribution if it exists.
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1. Do the graphical representation of the queue.

▶ Correction

0 1 2 3 4 . . .

L0 L1 L2 L3

µ1 µ2 µ3 µ4 µ5

2. Show that P ′
n(t) = Pn−2(t) · Ln−2 − Pn(t) · (Ln + µn) + Pn+1(t) · µn+1 if n > 2.

▶ Correction

We compute Pn(t+ dt). At that time there can be n people in the queue in multiple cases :
— there were n people at time t and, with probability (1 − Ln − µn)dt + o(dt), no one

arrived.
— there were n − 2 people at time t and, with probability Ln−2dt + o(dt), two people

arrived.
— there were n+ 1 people at time t and, with probability µn+1dt+ o(dt), one person left.
— there were another number of people at time t and with a probability o(dt) this value

came to n.

Pn(t+ dt) = Pn−2(t) · (Ln−2dt+ o(dt)) + Pn(t) · ((1− Ln − µn)dt+ o(dt))

+ Pn+1(t) · (µn+1dt+ o(dt)) +

+∞∑
k=0

k ̸=n−2
k ̸=n

k ̸=n+1

Pk · o(dt)

Pn(t+ dt)− Pn(t)

dt
= Pn−2(t) · Ln−2 − Pn(t) · (Ln + µn) + Pn+1(t) · µn+1 +

+∞∑
k=0

Pk · o(1)

Pn(t+ dt)− Pn(t)

dt
= Pn−2(t) · Ln−2 − Pn(t) · (Ln + µn) + Pn+1(t) · µn+1 + o(1)

lim
dt→0

Pn(t+ dt)− Pn(t)

dt
= Pn−2(t) · Ln−2 − Pn(t) · (Ln + µn) + Pn+1(t) · µn+1

P ′
n(t) = Pn−2(t) · Ln−2 − Pn(t) · (Ln + µn) + Pn+1(t) · µn+1

3. What are the formulas of P ′
0(t) and P ′

1(t).

▶ Correction

P ′
0(t) = −P0(t) · L0 + P1(t) · µ1

P ′
1(t) = −P1(t) · (L1 + µ1) + P2(t) · µ2

4. Assuming there exists a stationary distribution, show that P1 = L0

µ1
P0 and P2 = (L1 + µ1) ·

L0

µ1µ2
P0.

▶ Correction

We have P ′
n(t) = 0 and Pn(t) = Pn.

0 = −P0 · L0 + P1 · µ1

8



Donc

P1 =
L0

µ1
P0

Et

0 = −P1 · (L1 + µ1) + P2 · µ2

0 = −(L1 + µ1)
L0

µ1
P0 + P2 · µ2

Donc

P2 = (L1 + µ1) ·
L0

µ1µ2
P0

We set for n ≥ 0 :

NS(n) = {I ⊆ J1;nK|∀i < j ∈ I, i+ 1 ̸= j}

P (I, n) =
∏
i∈I

µi

∏
i̸∈I
i≤n

Li

For instance NS(5) = {∅, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5}}
et P ({1, 4}, 4) = µ1L2L3µ4.

Note that : NS(0) = ∅, P (∅, 0) = 1.

5. Show that, for n ≥ 1,
∑

I∈NS(n+1)
n+1∈I

P (I, n+ 1) = µn+1

∑
I∈NS(n)

n ̸∈I

P (I, n)

Clue : do not use a proof by induction.

▶ Correction

Let I ∈ NS(n + 1) such that n + 1 ∈ I. Let J = I\(n + 1) then J ∈ {J ⊆ J1;nK|∀i < j ∈
J, i+ 1 ̸= j} = NS(n). And by definition of NS(n+ 1), n ̸∈ I.
Conversely if J ∈ NS(n) such that n ̸∈ J then J ∪ {n + 1} ∈ NS(n + 1) as, for all j ∈ J ,
j < n then j + 1 ̸= n+ 1. Thus the set I of NS(n+ 1) containing n+ 1 equals the sets J of
NS(n) not containing n and to which we added n+ 1.∑
I∈NS(n+1)

n+1∈I

P (I, n+ 1) =
∑

I∈NS(n)
n ̸∈I

P (I ∪ {n+ 1}, n+ 1) = µn+1

∑
I∈NS(n)

n ̸∈I

P (I, n).

6. Show that, for n ≥ 1,
∑

I∈NS(n+1)
n+1 ̸∈I

P (I, n+ 1) = Ln+1 ·
∑

I∈NS(n)

P (I, n)

Clue : again, no induction

▶ Correction

Let I ∈ NS(n + 1) such that n + 1 ̸∈ I. Then I ∈ {I ⊆ J1;n + 1K|n + 1 ̸∈ I et ∀i < j ∈
I, i + 1 ̸= j}. So I ∈ {I ⊆ J1;nK|∀i < j ∈ I, i + 1 ̸= j}. And then I ∈ NS(n). On the other
hand, if I ∈ NS(n) then by definition it does not contain n+ 1.∑

I∈NS(n+1)
n+1̸∈I

P (I, n+ 1) =
∑

I∈NS(n)

P (I, n+ 1)

= Ln+1 ·
∑

I∈NS(n)

P (I, n)

7. Show that, for n ≥ 1,
∑

I∈NS(n+1)

P (I, n+1) = Ln+1 ·
∑

I∈NS(n)

P (I, n) + µn+1 ·
∑

I∈NS(n)
n ̸∈I

P (I, n)

Clue : and again, no induction
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▶ Correction

Let I ∈ NS(n+ 1), then n+ 1 ∈ I or n+ 1 ̸∈ I.
Thus

∑
I∈NS(n+1)

P (I, n+ 1) =
∑

I∈NS(n+1)
n+1∈I

P (I, n+ 1) +
∑

I∈NS(n+1)
n+1̸∈I

P (I, n+ 1).

We can deduce the result from the two previous questions.
8. Show that, for n ≥ 1, Pn =

∑
I∈NS(n−1)

P (I, n− 1) · L0
n∏

i=1
µi

P0

Clue : use the three previous questions. In this case you can use an induction formula.

▶ Correction

For n = 1, we have P1 = L0

µ1
P0 = P (∅, 0)L0

µ1
P0 =

∑
I∈NS(0)

P (I, 0) · L0
n∏

i=1
µi

P0.

For n = 2, we have P2 = (L1+µ1)· L0

µ1µ2
P0 = (L1+µ1)· L0

n∏
i=1

µi

P0. In addition, NS(1) = {∅, {1}}

and P (∅, 1) = L1 andt P ({1}, 1) = µ1. Consequently, we have (L1 + µ1) =
∑

I∈NS(1)

P (I, 1).

For n = 3, we prove similarly that (L2L1+L2µ1+µ2L1) · L0

µ1µ2µ3
P0. (We need n = 3 because

the induction will use three steps).
We assume the property is true for every k ≤ n and we must check it for n + 1. We know
that 0 = Pn−2 · Ln−2 − Pn · (Ln + µn) + Pn+1 · µn+1. So :

Pn+1 =
1

µn+1
(Pn · (Ln + µn) + Pn−2 · Ln−2)

By induction

Pn+1 =

(Ln + µn) ·
∑

I∈NS(n−1)

P (I, n− 1) · L0
n∏

i=1

µi

P0 + Ln−2 ·
∑

I∈NS(n−3)

P (I, n− 3) · L0

n−2∏
i=1

µi

P0

 1

µn+1

Pn+1 =

(Ln + µn) ·
∑

I∈NS(n−1)

P (I, n− 1)− µnµn−1Ln−2 ·
∑

I∈NS(n−3)

P (I, n− 3)

 L0P0

n+1∏
i=1

µi

According to question 7, we have the following equality

(Ln + µn) ·
∑

I∈NS(n−1)

P (I, n− 1) =
∑

I∈NS(n)

P (I, n) + µn ·
∑

I∈NS(n−1)
n−1∈I

P (I, n− 1)

Pn+1 =

 ∑
I∈NS(n)

P (I, n) + µn ·
∑

I∈NS(n−1)
n−1∈I

P (I, n− 1)− µnµn−1Ln−2 ·
∑

I∈NS(n−3)

P (I, n− 3)

 L0P0

n+1∏
i=1

µi

According to question 6, we have the following equality

Ln−2 ·
∑

I∈NS(n−3)

P (I, n− 3) =
∑

I∈NS(n−2)
n−2̸∈I

P (I, n− 2)

Pn+1 =

 ∑
I∈NS(n)

P (I, n) + µn ·
∑

I∈NS(n−1)
n−1∈I

P (I, n− 1)− µnµn−1

∑
I∈NS(n−2)

n−2̸∈I

P (I, n− 2)

 L0P0

n+1∏
i=1

µi
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According to question 5, we have the following equality

µn−1

∑
I∈NS(n−2)

n−2̸∈I

P (I, n− 2) =
∑

I∈NS(n−1)
n−1∈I

P (I, n− 1)

Pn+1 =

 ∑
I∈NS(n)

P (I, n) + µn ·
∑

I∈NS(n−1)
n−1∈I

P (I, n− 1)− µn

∑
I∈NS(n−1)

n−1∈I

P (I, n− 1)

 L0P0

n+1∏
i=1

µi

Pn+1 =

 ∑
I∈NS(n)

P (I, n)

 L0P0

n+1∏
i=1

µi

By induction the result is true.
9. 60 people arrive every hour and 35 leave every half hour. What is the value of P8 ?

▶ Correction

We must first compute Li and µi. We have µi = 2µ = 70 and L = λ/2 = 30 (30 pairs of
people arrive every hour).

By programming the above formula, we can compute P0 with

+∞∑
i=1

∑
I∈NS(n−1)

P (I, n− 1) · L0
n∏

i=1
µi

−1

.

We can approximate the sum with the first 30 values. We get more or less 1/6 = 0.16.
We then compute P8 =

∑
I∈NS(7)

P (I, 7) · L0
8∏

i=1
µi

P0 = 0.29/6 ≃ 4.8410−2.

Interesting detail : if we take the classical queue (1 arrival at a time) with λ = 60 and µ = 70
we get a slightly similar result for P8, with a precision of 10−2.
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